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A B S T R A C T

Self-Organizing Network (SON) stands for a key concept characterizing the behavior of the future mobile
networks. The evolution of telecom infrastructures towards 5G transforms the network management from the
traditional and static processes to automatic and dynamic ones. SON was proposed to offer agile on-demand
services to the users through providing self-adaptation capabilities to mobile networks on different categories.
This paper presents a detailed and exhaustive survey on SON evolution from 4G towards 5G networks. The
central focus of this survey is upon providing a deep understanding of SON mechanisms along with the
architectural changes associated with 5G networks. Within this framework, the approaches and trends in
self-organizing cellular networks are discussed. Additionally, the main functionalities of SON, namely self-
configuration, self-optimization and self-healing are displayed. Our work serves as an enlightening guideline
for future research works on SON as far as cellular networks domain is concerned.
1. Introduction

SON and Computer Systems have been a hot area of research among
the computer networking scientific community in recent years. Indeed,
self-organizing systems are invested in many scientific areas including
biology, chemistry, cybernetics, and computer science. The seminal
study of self-organizing systems has been conducted since 1953 by
Grassé [1], who explored the behavior of insect societies. His study,
which has check centered around nature, has shown changing forms
of order occurring without any central point of control. As artificial
systems, i.e. computer science applications, have become more difficult
to adapt and respond to changes in their environment without any
external control. Both researchers and industries have inspired by these
systems in such a way that they applied their mechanisms as artificial
systems.

Particularly, the wireless cellular communication systems have be-
come extremely complex mainly owing to the insatiable demand by
users for high-speed data as well as the emergence of new services.
SON’ importance lies in advancing the use cases of cellular networks.
Thus, self-organization is an intrinsic tool for network operators to
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manage the operations and the maintenance of future networks as well
as to reduce the operational expenditures. One of the main objectives
of future cellular networks is to make them fully organized systems.

1.1. Problem statement

The hyper-connectivity, diversity of applications and high density
of traffics have whetted the interest and drawn the attention towards
elaborating a new generation of 5G cellular network, which can not
only support more services than 4G but also fulfill the requirements of
novel applications. To cater for this new breed of services, several key
technologies adopted by 4G need to be integrated into 5G with several
improvements involving new further technologies. The integration of
these technologies in 5G gives rise to certain challenging problems.
To address these challenges, Machine Learning (ML) and big data have
the potential to empower intelligent SON operations [2]. Therefore,
they are leveraged in the network data analysis for decision-making
activities in the network automation process.
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1.2. Motivation and contribution

Several studies [3–11] surveyed SON concept in 4G context. We
are basically concerned with not only the basic concept of SON, but
also the challenging questions appearing with the implementation of
SON legacy in 5G cellular network and how ML design helps meet
5G requirements. Table 1 depicts the relevant works that surveyed the
application of SON in 4G and in 5G cellular network. As far as our
research is concerned, it is noteworthy that only surveys published
between 2010 and 2020 have been considered. Unlike other surveys,
we are the pioneer to the best of our knowledge to deeply discuss state-
of-the-art works for SON mechanisms including further explorations,
as illustrated in Table 2. For instance, the authors in [12] tackled the
challenges of Network Management Automation (NMA) in 5G from an
ML-perspective. Moreover, they also highlighted the potential enablers
for leveraging 5G NMA. Other surveys, such as [13] and [14], handled
the need for ML algorithms in different identified SON use cases in
5G. The authors in [10] traced the evolution of SON in 3rd Generation
Partnership Project (3GPP), referring to the specific use cases defined
by the 3GPP standard. They also provided a guideline of ML solutions
along with their applications in network management from 4G to 5G.
Survey [8] explored fully and in-depth the SON concept, the definition
of SON use cases in cellular networks and how ML techniques can be
applied to meet 5G requirements. Survey [15] gave special focus on
SON architectures and use cases of SON in 5G.

As in [4–6,8,10,14,15], the survey [16] discussed the different SON
categories and the most common use cases. As in [15] and [6],
survey [16] exhibited SON architectures. To the best of our knowledge,
there is no comprehensive survey paper that encompasses all these
points (i) SON definition (ii) SON concept (iii) all SON categories, use
cases and architectures (iv) Pros and Cons of SON categories, use cases
and architectures, (v) Pros of SON functions application, SON use case
in 5G and its challenges that need to be tackled, (vii) Insight to other
organizations instead of 3GPP, (viii) released projects and projects
in progress on SON application in 5G, (ix) SON challenges to meet
5G requirements, (x) Deep analysis of SON solutions, (xi) Algorithmic
aspects of each use cases. The main goal of our work is to provide the
reader a deeper insight into of all these points. Basically, we provide a
new SON definition and concept. Additionally, we depict an accurate
classification of SON categories, use cases, architectures, considering
the Pros and Cons of each of them. Furthermore, we report some
projects investigating the Pros provided by ML and big data to enhance
5G SON. Moreover, we discuss the proposed works of SON application
in the literature highlighting the aspect of each proposed solution. Our
main contributions are outlined as follows:

• We provide an overview for future research on SON functions, its
definitions, its categories, the basic SON use cases and architec-
tures in 5G.

• We point out the shortcomings and the issues of SON implemen-
tation in 5G and discuss the significant benefits from ML and big
data to cope with these limitations.

• We categorize the SON functions based on the management in 5G
cellular networks.

.3. Scope and paper organization

In this paper, we intend to provide a basic tutorial and explanation
f the main SON categories as well as most popular SON use cases
n 5G cellular network, the fundamental SON architecture that meets
he 5G requirements in addition to the significant works which used
n ML-based approach to implement automation and SON. The rest of
ur survey is organized as follows. Section 2 introduces a tutorial on
he SON background, its definition, its SON standardization efforts, its
ategories, the most popular SON use cases in 5G, 5G SON architecture
nd the projects concerning SON application in 5G. Section 3 identifies
he proposed ML solutions applied in SON. Section 4 explores some
pen issues and future trends. This organization is illustrated through
ig. 1.
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1.4. List of acronyms

See Table 3.

2. SON background

In this section, we first set forward the basic principles of SON
philosophy and then recall its various definitions, drivers, use cases and
related architecture challenges.

2.1. SON definitions

The widespread use of Self-Organization (SO) term in a variety of
systems makes it difficult to find an exact definition of what SO
is about. In literature, there exist numerous definitions of SO in the
context of cellular networks. For instance, Serugendo et al. defined it
as an adaptive system which can cope with unstructured and complex
open environment [18]. Ye et al. considered it as a system that should
exhibit the proactive, reactive, and social behavior [19]. Erol G re-
ferred to SON as a cognitive network, "the network that can identify its
‘self’ by being able to store and then be aware of its past, present and future
experience and plans, may then be able to plan new actions under various
foreseeable circumstances, and carry out such planned actions whenever it
senses that the current or future conditions require that these actions be
taken" [20]. Self-organization is regarded as a mechanism or a process
which enables a system to change its organization without explicit
command during its execution time.

2.2. Overview of SON standardization efforts

There are multiple industrial organizations and standardization
bodies related to network communications, such as 3GPP, 5GNOW,
FANTASTIC-5G, 5G Infrastructure Public Private Partnership (5GPPP),
FP7, International Telecommunication Union (ITU), National Institute
of Standards and Technology (NIST), 4G Americas, 5G Americas, Small
Cell Forum, Global System for Mobile Communications (GSMA), Next
Generation Mobile Networks (NGMN) Alliance. These bodies have fo-
cused on cellular network (i.e., LTE, 5G and beyond) standards and
regulations and they are examining the future 6G. NGMN Alliance
is associated with 3GPP as a Market Representation Partner to help it
ensure a high level of service and to meet the satisfaction of end-users.
The organizations 3GPP, NGMN, FP7 and 5GPPP have concentrated on
NM area, i.e SON evolution as well as use cases and their application
to address cellular network requirements.

2.3. SON concept

SON is an autonomous management network that is considered
as a next-generation network architecture in 3GPP standards. SON
concept started to appear and to set with Release 8 and NGMN [21]
through defining its functionalities regarding self-configuration, initial
equipment installation and integration. The main target underlying
the use of SON is to meet the expected network performance (i.e., Key
Performance Indicator (KPI)). The KPI lies within the perspective of
telecommunications operators, including capacity, Quality of Service
(QoS), Capital and Operation Expenditures (CAPEX/OPEX) [11]. SON
promises operators to enhance the QoS as well as to reduce CAPEX
and OPEX costs in an autonomous way. Thus, SON mechanisms allow
the easy management of network operations, resources and optimiza-
tion [4,10,13]. The success of 5G rests upon SON functions deployment
in Radio Access Network (RAN) in a coherent manner. SON algorithms
operate at coarse timescales and optimize RAN performance via control
plane coordination without affecting the fine timescale scheduling
decisions in the wireless data plane [22] – [23].
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Table 1
Related work on SON in Cellular networks.

SON in 4G SON in 5G

Ref+Y Key vision Ref+Y Key vision

[3] 2010 Self-configuration, self-optimization, Long Term
Evolution (LTE)

[13] 2014 5G, SON challenges, big data, ML.

[4] 2012 Cellular networks, Self-configuration, self-optimization,
self-healing.

[15] 2015 5G, SON, cloud, cognitive radio, security.

[5] 2013 SON, LTE, mobile network, 3GPP, enhanced Node
Base station (eNB)

[12] 2016 5G, Network Management (NM), SON, cognition, ML,
automation.

[6] 2013 Self-configuration, self-optimization, LTE-advanced
heterogeneous networks

[8] 2017 ML, SON, cellular networks, 5G.

[7] 2016 SON, SON coordination, routing protocols, wireless
sensor networks, 3GPP, LTE, peer to peer, NM,
conflict resolution, reinforcement learning, state
aggregation.

[10] 2018 NM, ML, SON, mobile networks, big data.

[8] 2017 ML, SON, Cellular Networks, 5G. [14] 2019 5G mobile communication, Artificial Intelligence (AI)
techniques, network optimization, resource allocation,
unified acceleration, end-to-end joint optimization

[9] 2017 SON, self-configuration, self-optimization, self-healing,
SON architecture

[11] 2020 SON, big data, 5G

[10] 2018 NM, ML, SON, mobile networks, big data. [16] 2020 5G, NM, network automation, SON
[11] 2020 SON, big data, 5G [17] 2020 5G, ML, SONs, 5G standalone, AI
Fig. 1. Paper organization.
2.4. SON categories

3GPP Release 8 classified SON into three main categories: self-
configuration, self-optimization and self-healing [8,24]. The SON func-
tions are mostly divided and located in different nodes. Self-
3

configuration functions are located in eNB, e.g. macro- pico- and het-
erogeneous communication entities, e.g. relay, femtocell Access Point
(AP). The self-optimization functions are located in NM systems and/or
in eNB [6]. Table 4 foregrounds the advantages and limitations of SON
categories.
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[14] 2019 [11] 2020 [16] 2020 [17] 2020 Our Con-
tribution

✓

✓

✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓

✓ ✓

✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓

✓

✓ ✓

✓

✓ ✓ ✓ ✓

✓

✓

✓ ✓ ✓

✓

✓

✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓

✓

✓

✓ ✓ ✓

✓ ✓ ✓
Surveys compared to our contribution.
Ref+Y [3] 2010 [4] 2012 [5] 2013 [6] 2013 [13] 2014 [15] 2015 [7] 2016 [12] 2016 [8] 2017 [9] 2017 [10] 2018

SON
Background

Definition

Overview of
SON
standardization
efforts

✓ ✓ ✓ ✓ ✓ ✓ ✓

Concept ✓ ✓ ✓ ✓ ✓ ✓

Categories ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SON Use Cases OPC ✓ ✓ ✓ ✓ ✓

NCLC ✓ ✓ ✓ ✓ ✓ ✓

RAPC ✓ ✓ ✓

LB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IC ✓ ✓ ✓ ✓

MM ✓ ✓ ✓ ✓ ✓

HPO ✓ ✓ ✓ ✓ ✓

RACHO ✓ ✓ ✓

CCR ✓ ✓ ✓ ✓ ✓ ✓ ✓

BO ✓ ✓ ✓

CO ✓ ✓ ✓

RO ✓ ✓ ✓ ✓ ✓ ✓

CSONF ✓ ✓ ✓ ✓ ✓

SR-NES ✓

SH-BF ✓

COM ✓ ✓ ✓ ✓

SON
Architectures

C-SON ✓ ✓ ✓ ✓ ✓

D-SON ✓ ✓ ✓ ✓ ✓

H-SON ✓ ✓ ✓ ✓

V-SON ✓

Projects
concerning SON
application in
5G

Previous
Projects

✓ ✓ ✓ ✓ ✓

Current
Projects

SON challenges
to meet 5G
requirements

✓ ✓ ✓ ✓

General
guidelines for
each ML
algorithm
according to
SON use
cases

✓ ✓
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Table 3
List of acronyms.

Symbol Description

SON Self-Organizing Network
ML Machine learning
LTE Long Term Evolution
3GPP 3rd Generation Partnership Project
eNB enhanced Node Base station
AI Artificial Intelligence
NM Network Management
SO Self-Organization
5GPPP 5G Infrastructure Public Private Partnership
ITU International Telecommunication Union
NIST National Institute of Standards and Technology Partnership
GSMA Global System for Mobile Communications
NGMN Next Generation Mobile Networks
KPI Key Performance Indicator
QoS Quality of Service
CAPEX Capital Expenditures
OPEX Operation Expenditures
RAN Radio Access Network
AP Access Point
NE Network Element
BS Base station
ANR Automatic Neighbor Relations
PCI Physical Cell Identity
O&M Operation and Maintenance
IP Internet Protocol
aGW access GateWay
HO HandOver
CCO Coverage and Capacity Optimization
MLB Mobility Load Balancing
MRO Mobility Robustness/Handover Optimization
ICIC Inter-Cell Interference Coordination
RACH Random Access Channel
COD Cell Outage Detection
COC Cell Outage Compensation
NCL Neighbor Cell List
OPC Operational Parameters Configuration
NCLC Neighbor Cell Lists Configuration
CID Cell IDentity
NR New Radio
gNB generation NodeB
NF Network Function
NRT Neighbor Relation Table
NDF Neighbor Detection Function
NRF Neighbor Removal Function
RAPC Radio Access Parameters Configuration
LB Load Balancing
IC Interference Control
MM Mobility Management
HPO Handover Parameters Optimization
RACHO Random Access Channel Optimization
CCR Coverage and Capacity via Relaying
BO Backhaul Optimization
CO Caching Optimization
RO Resource Optimization
CSONF Coordination of SON Functions
RAT Radio Access Technology
UE User Equipment
E2E End-to-End
SDN Software Defined Networking
RLF Radio Link Failure
TTT Time To Trigger
RRH Remote Radio Head
BBU BaseBand Unit
CPRI Common Public Radio Interface
ES Energy Saving
QoE Quality of Experience
SR-NES Self Recovery of Network Element Software
SH-BF Self Healing of Board Faults
COM Cell Outage Management
AAS Active Antenna Systems
D-SON Distributed SON

(continued on next page)
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able 3 (continued).
Symbol Description

C-SON Centralized SON
H-SON Hybrid SON
EM Element Management
Itf-N Northbound Interface connection
V-SON Virtual-SON
NFV Network Function Virtualisation
URLLC Ultra-Reliable Low Latency Communications
MIMO Multiple Input Multiple Output
IoT Internet of Things
CoMP Coordinated Multi-Point
SINR Signal to-Interference-Noise-Ratio
RSS Received Signal Strength
KNN K-Nearest Neighbor
GA Genetic Algorithm
LSTM Long-Short-Term Memory model
MLP MultiLayer Perceptron
D3A Data-Driven Dynamic Analysis model
IA Interference Aware
CREO Cell Range Extension Offset
RSSI Received Signal Strength Indicator
RSRQ Reference Signal Received Quality
RSRP Reference Signal Received Power
MEC Mobile Edge Computing
CIO Cell Individual Offset
SSN Self-Sustaining Network
NWDAF Network Data Analytic Function
NAMO Network AI Management and Orchestration

2.4.1. Self-configuration
Self-configuration is defined as a process of incorporating a new

Network Element (NE) into a service requiring minimal human oper-
ator intervention [25]. In fact, this concept started with 4G in order
to replace the conventional process of manual configuration through
self-configuration without the need for any human intervention. The
configuration started locally at each node. The Base Stations (BSs)
or eNBs, relay stations, and femtocells are configured during deploy-
ment/extension/upgrade of network terminals, or during a modifi-
cation occurring in the system. Then, they become autonomously
configured especially with the huge increase in the number of nodes
and scale of the system [4]. Self-configuration uses several functions
such as Automatic Neighbor Relations (ANR), automated configuration
of Physical Cell Identity (PCI). Article [3] portrayed some detailed steps
that are needed to achieve self-configuration process in eNBs, which
can also be extended to the femtocells impromptu deployment scenario.
The steps are as follows: eNB is powered on to be self-configured. It
scans the neighbor cells and generates the neighbor cell list. It chooses
a neighbor from the list which has a backhaul link with the Operation
and Maintenance (O&M) center. The new eNB checks the security to
the network and sends its authentication information to the selected
neighbor which will forward it to the O&M center. Next, the O&M
sends the Internet Protocol (IP) addresses of new eNB, the access
GateWay (aGW) and the configuration server to the sponsor eNB which
will transmit them subsequently to the new eNB. Using the IP addresses,
the new eNB connects the configuration server in order to make itself in
operational mode. After that, it downloads the essential softwares and
operational parameters and configures itself. It chooses autonomously
other parameters based on configuration parameters in neighboring
nodes. Finally, it establishes a backhaul link with both of the neighbor
eNBs and the core network, which achieves and delivers a status report
to the NM node [10].

The self-configuration process is still facing several challenges ow-
ing to the steady increase in the number of BSs which results in a
similar rise in the number of parameters e.g., thousands of different
parameters need to be configured; in addition to corruption likelihood
in the existing BS, begetting the disappearance of neighboring lists [8].
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Table 4
Advantages and limitations of SON categories.

SON category Advantages Limitations

Self-
configuration

Autonomous bringing of a
new NE into service

Corruption occurs in the
existing BS due to the
configuration of intensive
and different parameters.

Self-
optimization

Network parameters
optimization during
operation and after the
initial self-configuration

Dependencies between
parameters.

Self-healing Correct NE performance to
satisfy users

Self-healing solutions
weakness due to change
from reactive to proactive
scenarios in current
networks.

2.4.2. Self-optimization
3GPP Release 9 [26] inserted another category, namely self-

optimization, which autonomously optimizes the parameters of the
system after the initial self-configuration. The network provides some
measurements that help optimize the network parameters during oper-
ation. It intelligently optimizes the coverage and capacity, HandOver
(HO) and interference in cellular networks. To accomplish this pur-
pose, this concept uses several functions such as Coverage and Capacity
Optimization (CCO), Mobility Load Balancing (MLB), Mobility Robust-
ness/Handover Optimization (MRO), Inter-Cell Interference Coordina-
tion (ICIC) and Random Access Channel (RACH) optimization [4,10].
MRO, MLB, ICIC, CCO and others are defined based on NGMN standard
and 3GPP releases [27]. The self-optimization process is still facing
challenges of dependencies between parameters. Indeed, any change
in one of them can modify the operation of the network altogether [8].

2.4.3. Self-healing
Autonomously, it solves or reduces the faults in cellular network

by triggering appropriate recovery actions, especially the fault man-
agement in the RAN. In fact, if the NE (i.e., smartphones and tablets,
eNBs) does not correctly perform their tasks, the network performances
will be degraded with dissatisfaction of users.

However, the self-healing solutions face several challenges due to
the change from reactive to proactive scenario in current cellular net-
works. Indeed, the solutions must cope with this change by leaning on
previously gathered data in order to predict faults in the network [8].
Release 9 defined self-healing concept. Then, Release 10 added new
self-healing functions: Cell Outage Detection (COD) and Cell Outage
Compensation (COC) [10,15,28,29].

2.5. SON use cases

SON use cases define situations in which the self-organizing al-
gorithms are implemented. Each SON category is classified into self-
configuration use cases, self-optimization use cases and self-healing
use cases. 3GPP has proposed divers SON functions that automate the
network operations and achieve the goals of SON use cases design-
ing [4,30]. In addition, NGMN outlines the important SON use cases for
LTE, which are foreseen by standardization bodies and operators [31]
– [32]. Fig. 2 and Table 5 summarize the major use cases of each SON
category.

2.5.1. Self-configuration use cases
The basic steps of self-configuration process in eNBs can be outlined

in three main stages: configuration of operational parameters, Neighbor
Cell List (NCL) creation with neighbor eNB selection, and configuration
of existing radio parameters and setting of network topology.

These stages involve three major use cases of self-configuration such
6

as Operational Parameters Configuration (OPC) which describes the
self-configuration of all initial eNB parameters (including IP addresses),
Neighbor Cell Lists Configuration (NCLC) and Radio Access Parameters
Configuration (RAPC) [4,8].

• Operational Parameters Configuration: is the configuration of
basic operational parameters in eNB such as IP address, aGW, Cell
IDentity (CID) and PCI. In fact, it learns the parameters of BSs
in order to make them operable [8]. In order to distinguish the
signals received by each cell, it is necessary to identify each cell
by configuring its physical layer signature, called PCI. There are
several approaches [33] – [34] that focus on PCI assignment prob-
lem. The work [6] was elaborated to set up the basic parameters
configuration. In 5G network, the configuration consists in auto-
matically assigning the PCI to New Radio (NR) in next generation
NodeB (gNB) (typically eNB in LTE-advanced) by central system
management [10,35]. There are 1008 unique PCIs for identifying
gNBs [36]. PCI must be unique. A confusion or collusion can occur
if the PCI is not unique. The central NM system can detect the
confusion/collusion with reassigning a new PCI [37]. In addition,
PCI can aid to produce the NCL. In fact, neighboring cells can
use NCL to communicate with each other and uncover the new
neighbors [5]. Mwanje et al. [38] investigated the performance
of PCI allocation strategies and determined their limits.

• Neighbor Cell Lists Configuration: is based on the autonomous
NCL algorithm performance. It aims at discovering the neighbor
cells, introducing the new station to the neighbors and adding it
to their list. In order to detect the nearest neighbors and connect
them, several basic Network Functions (NF) can be invested.
Therefore, 3GPP Release 8 defined ANR function related to self-
configuration. ANR is located in eNB. It can reduce the manual
work, the provision and management of NCL and the update of
neighbor relation function in new deployed eNB. This automation
can minimize the time of eNB installation. Furthermore, ANR
can manage the conceptual Neighbor Relation Table (NRT). It
uses both functions which are located in ANR, Neighbor Detection
Function (NDF) and Neighbor Removal Function (NRF). In fact,
NDF can discover the new neighbors and add them to NRT
whereas NRF can remove outdated Neighbor Relation [5,10]. Nat-
ural Disasters, attacks, accidents must be thoroughly addressed.
Thus, disaster-resilient heterogeneous small cell networks based
on SON were proposed by [39] to autonomously enhance the
performance of small cell networks in disaster scenarios manage-
ment. To fulfill reliability, scalability and robustness of 5G
network, ANR exerts a direct impact on these requirements but
with certain enhancements. In fact, blacklisting and whitelisting
eX2 or/and eS1 policies are the evolved versions of the LTE proto-
cols X2 and S1. They are introduced to 5G NCLC. eX2 or/and eS1
rely on two transmission/reception BSs points, which can increase
both the scalability and the robustness of M2M communications
in 5G network [40] – [41].

• Radio Access Parameters Configuration: the new eNB must con-
figure other parameters after the NCLC [4,8]. These parameters
should be adjusted through:

– the reconfiguration of the backhaul when adding a new eNB
in 5G small-cells, can optimize the network’s connections
and minimize the latency [42].

– the configuration of transmit power parameters in the new
eNB using the data generated by neighboring cells, can
minimize the interference between neighboring cells [6,43].

– the self-configuration of HO parameters [44].
– the transmit power parameters adjustment in each femtocell

can improve indoor coverage and energy efficiency of the
network [45].

– Antenna azimuth configuration.
– Self-configuration of frequency allocation can minimize the
interference between existing nodes.
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Bajzik et al. [46] tackled the application of SON in mobile back-
haul. SON can autonomously evaluate the network status, sim-
plify its configuration process and minimize the configuration
cost.
To meet 5G requirements, a new configuration of parameters
can be injected to produce a dynamic system. The update of
configuration is grounded on an online method that guarantees
low latency compared to SON legacy [28].

o settle the problems related to the self-configuration of the new
ite in 4G, each node aims at simplifying the configuration of all its
nitial parameters including IP addresses, neighbor lists, Radio Access
arameters [4].

.5.2. Self-optimization use cases
The most prominent self-optimization use cases are: Load Balanc-

ng (LB), Interference Control (IC), Mobility Management (MM), HO
arameters Optimization (HPO), Random Access Channel Optimiza-
ion (RACHO), Coverage and Capacity via Relaying (CCR), Backhaul
ptimization (BO), Caching Optimization (CO), Resource Optimization

RO), Coordination of SON Functions (CSONF).

• Load Balancing: eNB may initiate an HO owing to the congestion
of traffic demand load in cell. In fact, cellular networks aim
to intelligently balance the load among cells or shift a part of
traffic from a congestion cell to neighboring cells which have
spare resources through self-optimizing the cell reselection. It
aims also to minimize the number of HOs by self-optimizing
HO parameters (optimizing the intra- Radio Access Technology
(RAT) and inter-RAT mobility parameters in 5G network) [47].
This optimization can improve the capacity of cells and their
neighbor cells and end-user experience [26,35]. MLB function is
used for managing cells’ congestion by redistributing cell load.
MLB operates based on the load estimation and resource status
exchange procedures [8,10,13]. To accomplish an excellent load
balancing, HO parameters (and cell border) are modified in both
cells to guarantee that User Equipment (UE) does not return to
the congested cell. In the inter-RAT case, RAN Information Man-
agement protocol is responsible for transferring the information
to the load of cells among BSs. O&M sets cell capacity class
values to compare and weigh the capacities between different
technologies radio [24]. However, improper HO decisions can
degrade the load balancing performance, which yields inefficient
usage of resources and service degradation [48]. To overcome
the HO decision problem, Mohajer et al. [49] elaborated an
effective mobility-aware load balancing approach that optimizes
the configuration of HO parameters and learns the possibilities
to distribute the excess load throughout the network. In view of
the required time to observe and diagnose the load problem, the
application of LB in reactive SON cannot achieve the zero latency
required by 5G [13].

• Interference Control (IC): since the inter-cell interference is the
cause of the spectral efficiency and system capacity weakness, the
capacity needs to be improved through the interference minimiza-
tion between cells. Therefore, cellular networks use the ICIC func-
tion aiming to self-optimize the management of radio resources in
order to control interference. It was introduced by 3GPP Release 9
to reduce the interference among cells using the same spectrum.
In fact, it coordinates the physical resources in order to reduce
the interference between neighboring cells [10,50] – [51]. This
function can be used by SON 5G [35]. The inter-cell interference
is mitigated for UEs at the cell edge by using ICIC in eNBs
communication via the X2 interface. Indeed, eNBs communication
is thought of as a load information message which is sent from
eNB to inform the neighboring eNBs about uplink interference
level per physical resource block in order to optimize scheduling
7

for UEs at cell edges [52]. Témoa et al. [53] identified a full
dynamic ICIC scheme to optimize the joint resource allocation to
users and dynamic power control. For 5G network, coordinated
scheduling, coordinated beamforming, and joint transmission are
considered as significant components of ICIC techniques. Despite
cell-edge UEs throughput improvement provided by these com-
ponents, 5G still faces many different challenges (i.e., SON must
provide higher data rates, higher End-to-End (E2E) performance,
and lower energy consumption). Moreover, several practical is-
sues in 5G interference management must be settled to achieve
real implementations (i.e., realistic interference condition, prac-
tical receiver architecture, channel state information reporting
for advanced interference management, practical issues with joint
scheduling, prospective gains) [54].

• Mobility Management: cellular networks aim to predict users’
movement and label users’ placement in order to automatically
optimize the cell resource management and reduce the HO cost.
MM is classified into two components: location management and
HO management. The cellular network uses the location manage-
ment process to effectively and accurately identify the location
of user and HO management process to optimize the HO per-
formance between neighboring BSs cells. The HO optimization
tries to minimize the likelihood of dropped calls and unnecessary
HOs. [8,55] – [56]. Alhammadi et al. [57] set forward a weighted
fuzzy self-optimization approach to optimize the parameters of
HO control. The application of Software Defined Networking
(SDN) technology in 5G can solve the MM problems that face 4G
network. Indeed, SDN controller has a global view on 5G network
which can optimally handle HO problems by using clustering
solutions. The MM in 5G still faces various challenges even with
SDN utilization (e.g., network devices limitations when applying
SDN service functions) [58]. The increase in deployment of small
BS in 5G network will deepen the HO management problems
(i.e., high HO probability, more Radio Link Failure (RLF) and
unnecessary HOs).

• Handover Parameters Optimization: two main HO parameters
govern HO performance: Time To Trigger (TTT) and HO Hys-
teresis value. Setting HO parameters affects several measures
determining a proper network performance such as ping-pong
(unnecessary HOs) rate, call blocking probability, call dropping
probability and early or late HOs. In fact, incorrect HO pa-
rameter settings raise multiple mobility problems such as radio
link connection failures and ping-pong HOs (unnecessary HOs)
that degrade user experience and produce wasted network re-
sources [8,26]. Release 9 3GPP defined MRO function which is
used to detect and minimize the HO-related radio link connection
failures. Indeed, eNB can communicate to neighboring cells to
detect HO failure cases or can receive a report from the user
at the time of failure containing radio measurements [7,59]. In
addition, MRO is used to minimize the inefficient use of network
resources generated by the unnecessary HOs [26]. Alhammadi
et al. [60] introduced dynamic HO control parameters in HetNets
adjusting TTT and HO margin parameters. These issues can be
intensified with the increase of ultra-dense small cells deployment
in 5G. SON MRO algorithm must be enhanced to keep abreast
of changes and automatically detect and solve five 5G mobility
problems such as failure due to too early HO, failure due to too
late HO, failure due to HO to wrong cells, unnecessary HO and
ping-pong HO [35,57].

• Random Access Channel Optimization: to have a quick access
to the network, the RACH must be well configured. Incorrect
configuration increases the access time as well as the number of
accesses failures. Furthermore, it affects call setup performance.
To achieve a better performance for UE random access, a set of
RACH parameters must be automatically configured. This con-
figuration reduces the network access time and minimizes the

accesses failures: RACH configuration (resource unit allocation),
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RACH attempts split, RACH back-off parameter value, RACH
transmission power control parameters. This use case rests upon
two main functions: RACH management and control function
that collects the performance measurements to supervise the per-
formance and RACH optimization function that adjusts RACH
parameters. Indeed, RACH optimization function aims to mini-
mize the number of attempts on the RACH channel, which causes
the interference in order to optimize the RACH performance.
This use case can be applied in 5G network (e.g., 5G NR cells)
using RACH management and control function as well as RACH
optimization function. After connection, 5G NR BS uses RACH
management and control function to query UEs about the number
of attempts sent until successful access and the number of conflict
resolution failures in order to minimize the accesses failures on
the RACH channel. The accesses failure minimization offers a
better performance by minimizing the interference. In addition, it
collects measurements about the time division needed for UEs in
order to achieve the synchronization [10,35,47,61]. 3GPP Release
16 defined a new feature: Two-step RACH that can be applied
in 5G NR. This feature presents several challenges: preamble
allocation problem, resource mapping between preamble IDs of
a specific RACH Occasion and a PUSCH Resource Units problem
as well as a detected collision problem [62].

o improve the interoperability between small-cells and macro-cells,
GPP Release 10 [61] introduced new functions to each use case like
CO, Energy Saving, MLB enhancement and enhanced ICIC.

• Coverage and Capacity via Relaying: cellular networks aim to
self-optimize the network parameters to provide an optimal ca-
pacity and an optimal coverage [26]. It uses a CCO function
that aims to achieve the best trade-offs between capacity and
coverage. To reach this goal, CCO implements self-optimizing
algorithms that ameliorate the coverage, cell throughout and edge
cell throughput [10]. A set of parameters can be optimized in
cellular networks e.g., antenna parameters. Dreifuerst et al. [63]
proposed to optimize the transmit power and downtilt settings in
each sector in order to maximize the coverage and minimize the
interference in a multi-cell network. CCO can be adopted in 5G
taking into account the functions specific to 5G radio technology
such as beam management [35,47]. In industry application, 5G is
absolutely beam-centric which is slightly new for operators and
engineers. In addition, 5G is expected to improve the enhanced
Mobile Broadband service which requires powerful beamforming
and improved time-synchronization [64].

• Backhaul Optimization: The backhaul is the connection between
the BSs and the core of the network. In LTE, a radio controller
node is designed for backhaul aggregation but it is not exploited.
This node can manage all backhaul connections from all radio
stations towards the core. In Cloud RAN 5G architecture, the
backhaul directly connects the Remote Radio Head (RRH) to
BaseBand Unit (BBU) or to aggregation node (e.g., fronthaul).
Common public radio is the interface that separates the RRU
from the BBU. The basic fronthaul performs over this interface.
To overcome the strict requirements of Common Public Radio
Interface (CPRI)-based basic fronthaul in 5G network, researchers
sought other interface solutions such as next-generation fron-
thaul interface, fronthaul-lite and xHaul. Chitimalla et al. [65]
suggested encapsulating CPRI over Ethernet to overcome CPRI
challenges by using Ethernet technology. The current backhaul is
completely incapable to satisfy specific user needs in 5G network,
especially with the incorporation of new wireless technologies.
The backhaul needs more intelligence to meet 5G user require-
ments. The SON aims to intelligently optimize the communication
between cells core network providing different requirements such
as high capacity, flexible end-to-end connectivity, reliability and
low latency [66].
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• Caching Optimization (CO): the duplication of popular content
requests generates a high content request concentration. To avoid
the frequent transmission of duplicate content and reduce the
network load, the same content will be cached at BS [8,67] – [68].
To optimize the hit-ratio of caching content, the caching decision
must be based on reasonable information such as content type,
its caching placement and steps. Therefore, the analysis of user
behavior can assist the caching solutions to opt for the best deci-
sion [67]. Tanzil et al. [69] predicted content popularity by using
users’ behavior, content and request statistics features. Through
using AI solutions, the 5G caching optimization aims to predict
not only the type of content, that can be required by users, but
also the path loss/link budget. Resting on the observable channel,
AI can facilitate the deduction of the unobservable channel state
information [70].

• Resource Optimization: energy expenses stand for a typical crit-
ical cost for the operator. It emerges with the continuous den-
sification of network. The minimization of energy consumption
is considered as a primary problem in the resource optimization.
The network must offer a capacity corresponding to the required
traffic demand at any one time. Energy Saving (ES) mechanism
is implemented to save the energy expenses by allowing cells
to go into sleep mode, resulting in low energy consumption [7,
8,10,26]. Mwanje et al. [71] identified a distributed solution
which provides an individual decision of cell deactivation or
reactivation taking into account the amount of network-wide
traffic and signaling minimization among cells. In 5G network,
the ES mechanism is classified into: intra-RAT 5G ES and inter-
RAT ES. In intra-RAT 5G ES, some functions of an NR or an NF
are powered-off in an off-peak-traffic situation as well as coverage
and capacity of ES cell or NF would be operated by other NR cells
or NFs. The same intra-RAT ES scenario was adopted by inter-
RAT 5G ES, provided that the coverage and capacity of ES cell
or NFs will be operated by cells or NFs of other RAT [35,47].
Legacy ES ON solutions are foregrounded to reactively switch
the OFF/Sleep states of BS. Due to the sharp dynamics of traffic
and high densification in 5G, the switching among states requires
a certain amount of time which can degrade the Quality of
Experience (QoE) of users [72].

• Coordination of SON Functions (CSONF): Self-Coordination
among SON functions was identified by 3GPP Release 11 [73] in
order to improve network operational stability. In fact, some self-
optimization use cases share the same parameters with different
functions and goals. The coordination operates in the situations
when SON function affects the other SON functions triggering
the degradation in their performances [74]. Cellular networks
aim to guarantee a coordination between two and more dis-
tinct functions without interference or conflicts. For example,
LB and HO parameters optimization use cases share the same
parameters e.g., HO backup, with different functions: MLB and
MRO, and different goals: balance the load between cells and
reduce ping-pong HO effects. Thus, a suitable SON algorithm must
be performed to coordinate MLB as well as MRO and combine
both conflicting goals in order to avoid MLB and MRO conflicts.
This algorithm can reach load balancing between cells with ping
pong minimization [8,74]–[75]. FP7 SOCRATES project focused
on the SON functions conflict problem and proposed to classify
the selected inter-related parameters of parametric conflict into
basic groups in order to ensure well coordination [76]. Hard
classification approach proposed by Lateef et al. [74] is based
on five main categories: parameter conflicts, network topology
mutation conflicts, KPI conflicts, logical dependency conflict, and
measurement conflict. In [77], Lateef et al. analyzed the different
conflicts between different kinds of SON functions and pro-
posed to classify these conflicts into two principle soft categories:
measurement and logical dependency conflicts. Based on hard
and soft classifications, a hybrid self-coordination mechanism is

developed. It rests on two essential architectures:
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– Hybrid self-coordination mechanism based on centralized
architecture: the resolution of SON function conflicts is
determined by the centralized server. The work [77] han-
dled MRO and Energy Efficiency functions conflict problem.
Indeed, two eNB communicate with each other to check
whether there is any active conflicting SON function. The
two eNBs perform root cause evaluation procedure. Then,
the evaluation results will be exchanged to the 𝑂&𝑀 server
in order to resolve the logical dependency conflict between
two functions.

– Hybrid self-coordination mechanism based on distributed
architecture: the same steps of the centralized self coordi-
nation mechanism are kept, but the conflict resolution per-
forms at eNBs rather than at the centralized 𝑂&𝑀 server.

In 5G, the SON legacy solutions may raise trust and robustness prob-
lems which need an efficient coordination scheme solutions [78].

2.5.3. Self-healing use cases
Release 11 [29,79] defined a set of self-healing use cases such as

Self-Recovery of Network Element Software (SR-NES), Self-Healing of
Board Faults (SH-BF), Cell Outage Management (COM). These use cases
can be applied in 5G NE [35].

• Self-Recovery of Network Element Software: the NE must re-
main in operation, even if NE software fails due to loading
the previous software version or configuration. Thus, the pro-
cess of Self-healing is triggered to heal the fault by removing
the fault software and re-configuring or restoring the incorrect
configuration data [10,29].

• Self-Healing of Board Faults: cellular networks aim to automati-
cally detect and solve the board faults. The process of self-healing
is triggered to heal the fault. In fact, if a failed board in a system
does not function appropriately, it will be blocked and the system
automatically switches to a stand-by board that is in working
order, then the failed board will be restarted. If the stand-by
board is not in working order, the failed system board will also
be blocked [29,80].

• Cell Outage Management (COM): Referring to the exponential
increase in cell number, manual solutions for detection of cell
outage like sleeping and out-of-service, will be insufficient. There-
fore, several auto-detection and auto-compensation solutions have
been developed to overcome the outage scenario and avoid the
disruptions in the network [8]. This use case is divided into
two main functions: COD and COC. COD helps automatically
identify the cell outage using input parameters such as KPIs
and alarms. Once the parameters satisfy the COD condition, the
cell outage will be detected. For instance, the value of one KPI
arrives at a threshold or alarm rings during cell outage [29].
COC automatically compensates for a cell outage to continue cell
operations. In fact, the neighboring cells detect the fault, classify
its type and take a compensation decision. The compensation can
be a relay assisted HO, power compensation or reconfiguration of
their antenna tilt [4]. Sleeping cell remains a challenge for SON
legacy. It leads to the degradation of the coverage and capacity
gap as well as the increase of the congestion in neighboring cells.
In addition, the NM cannot directly detect the cell outage if the
configurations are wrong. Moreover, the cell outage detection can
take hours and days, which degrades further the QoE of users.
From this perspective, ML is regarded as the best and most in-
telligent solution to enhance SON especially for 5G management
network [28]. Ping et al. [81] displayed a cell outage detection
method based on ML solution to fix the above issues.

The autonomous troubleshooting process provided by self-healing cat-
egory is composed of several phases. Among the most outstanding
ones, we mention the diagnosis system phase [82]. The diagnosis is
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also called root cause analysis which ensures the fault identification of
cause on the basis of symptoms (i.e., KPIs and alarms) [83]. The fault
identification confronts both the no labeled symptoms with the causes
of fault and the analysis tasks of each fault cause without expert knowl-
edge [14]. To surmount these challenges, Gómez-Andrades et al. [82]
exhibited an automatic diagnosis system based on AI aiming to iden-
tify new faults and to help the system diagnose without considering
historical reports of solved cases and expert knowledge.

In addition to self-healing use cases and SON functions coordination
introduction, Release 11 focused also on MRO enhancement and inter-
RAT HO optimization. Release 12 explored the use of LTE technology
for emergency and security services. Moreover, it examined the Active
Antenna Systems (AAS) Base Station feasibility specifications, the NM
enhancements in centralized CCO, Multi-vendor plug and play eNB
connection to the network, SON enhancements for ULTRAN/EUTRAN
and especially ES enhancement in EUTRAN [84] – [85].

2.6. SON architectures

According to 3GPP Release 8, SON architecture is classified into
three main categories: Distributed SON (D-SON), Centralized SON (C-
SON) and Hybrid SON (H-SON) which corresponds to a combina-
tion of centralized and distributed architectures. The efficiency of
self-coordination among SON functions depends on the architecture
selection [86].

2.6.1. Centralized SON
In C-SON architecture, the SON algorithms work on a central NM

system or in a central SON server (O&M in 3GPP LTE-advanced) that
manages all edge radio nodes without human intervention [86] – [87].
This central NM system uses the management data to monitor the net-
work (especially eNB), then analyzes the monitoring information and
takes decisions on the actions of SON. By analyzing the historical and
current monitoring information, it monitors and evaluates the results
which will be then executed on the network [6,35]. 3GPP defined two
management levels in C-SON [59,88]:

• Network Management-Centralized SON: SON algorithms are per-
formed at the NM level.

• Element Management-Centralized SON: SON solutions are per-
formed at the Element Management (EM) level.

All SON functions in C-SON are implemented by the central NM system.
Simultaneous operations of the conflicts SON functions may beget
network instability. Therefore, C-SON is the most robust solution that
controls all SON functions in a centralized way, which facilitates their
coordination in central NM [89]. In order to specify the decision
parameters, the SON functions must request a permission to the SON
coordinator before changing the setting of its parameters. This oper-
ation can take a long time especially as Operations, Administration,
and Maintenance messages have the highest priority in central NM
system [10]. C-SON is characterized by its high computational capacity
which executes powerful optimization algorithms including several
variables or cells. However, this execution can take a long time [10].
Introducing a new eNB node gives rise to another challenge that
obstructs the operation of C-SON [84]. The C-SON architecture with
NM or EM is depicted in Fig. 3.

2.6.2. Distributed SON
In D-SON architecture, the SON algorithms perform at the NFs

which are located in NE (typically eNBs). NE locally makes autonomous
decisions and communicates their decisions to neighbor NEs through
the X2 interface. According to 3GPP, SON algorithms in D-SON are
executed at the NE level [59,88]. NF monitors the network and analyzes
the network data. Then, it takes decision on the SON actions and
executes them in NE [35,37,90]. D-SON is used in cases where real-
time response, frequent or sudden changes and a fast automation cycle
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Fig. 2. SON categories, use cases and functions in 5G.
Fig. 3. Centralized SON architecture.
are required. In fact, this architecture offers fast and easy optimization
and makes the SON functions much more dynamic than C-SON.

D-SON is generally adopted in small geographic scope, each NE has
its SON functions that can be coordinated by the local SON coordinator
with lower latency characteristics [10]. Despite all these features, D-
SON does not provide efficient and consistent operations and cannot
execute powerful optimization algorithms. In addition, this architecture
is vulnerable compared to C-SON [15,86,91]. D-SON architecture is
10
illustrated in Fig. 4. Release 13 introduced Operations, Administration,

and Maintenance enhancements in centralized and distributed architec-

tures (especially in distributed MLB and centralized CCO). It studied

SON effectiveness on AAS deployments, and investigated the effective-

ness of the continuity and adaptation of connection between SON and

MRO without affecting radio resource management mechanism [84].



Computer Networks 199 (2021) 108435H. Fourati et al.
Fig. 4. Distributed SON architecture.

2.6.3. Hybrid SON
In H-SON architecture, the SON algorithms perform both at NFs

and central SON server. The server provides the initial parameters and
NF can then update and refine these parameters. This architecture is
a combination of the best of both C-SON and D-SON. In fact, NFs
coordinate with the server to create a complete SON algorithm. Then,
the decision on the SON actions can be taken by the eNB or SON server
according to the use cases [35]. According to 3GPP, SON algorithms in
H-SON are executed at two or more levels of the following levels: NE,
EM or NM [59,88].

H-SON ensures an eNBs communication without using an interface
counter to D-SON. In addition, it provides a load balancing to multiple
technologies. It enables the power management optimization which
minimizes the small cells interference including pilot pollution [15,37,
86]. H-SON architecture with NM or EM is depicted in Fig. 5.

2.6.4. 5G SON architecture requirements
In the current networks, SON legacy systems rely on H-SON archi-

tecture. In fact, this architecture is grounded on the best of both C-SON
and D-SON. C-SON algorithms operate several cells in the network
controller level and D-SON uses various fast-reacting D-SON algorithms
which perform in each eNB with low scope. To combine both ap-
proaches, a coordination between the C-SON cells algorithms and the
input/output of D-SON algorithm is established through a Northbound
Interface connection (Itf-N). With the emergence of 5G, SON archi-
tecture needs to be improved in order to meet 5G requirements and
overcome the high densification of small cells and the heterogeneity in
RATs challenges. Virtualization is introduced into H-SON architecture
in order to offer an open and scalable network architecture and to
handle the large volume of cells and the variety of radio interfaces
as well as the required configuration. Basically, the Virtual-SON ar-
chitecture (V-SON) deals with two basic 5G technologies: Network
Function Virtualisation (NFV) and SDN. Their algorithms operate on
Virtual Machines that locate close or at eNB. V-SON optimizes the
interfaces organization between the radio resources, provides a fast
11
Fig. 5. Hybrid SON architecture.

Fig. 6. Virtual-SON architecture.

and coordinated SON that enhances the reconfiguration of RAT and
cell layers and takes heed of demands [15]. Fig. 6 depicts the V-SON
architecture.

2.7. SON challenges to meet 5G requirements

In the future, the network is expected to be more and more den-
sified. Indeed, the node parameters in 5G network are expected to be
higher than 4G, with nearly 2000 parameters per a node, which leads
to operational tasks complexity. Besides, the heterogeneity progression
in layers and technologies, the complexity of NFV and SDN manage-
ment as well as increasing diversity of 5G applications and services
deepen the management complexity and obstruct 5G requirements
implementations [10,13]. From this perspective, the management and
orchestration SON is developed by 3GPP as an advanced automation
solution to manage the volume and diversity of services in 5G. Re-
lease 15 corroborated the use of SON solution to enhance the 5G
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Table 5
SON use cases.

SON use cases Objectives SON
functions

Problems in use cases Proposed works SON use case applied in 5G

OPC Configure the basic operational
parameters in eNB

PCI, CID PCI assignment problem. [33]–[34],[38] -Automatically assigning PCI to NR.
-Confusion/collusion detection with
reassigning a new PCI.

NCLC Discover the neighbor cells,
introduce the new station to the
neighbors and adds it to their list

ANR,
NDF,
NRF, NRT

Natural Disasters, attacks and
accidents problems.

[39] New blacklisting and whitelisting eX2 or/and
eS1 policies which increase both the
scalability and the robustness of M2M.

RAPC Other parameters configuration Problems in mobile backhaul. [46] -Injection of new configuration of parameters
to give a dynamic system.
-Online method to guarantee the low latency
in 5G.

LB Intelligently balance the load
among cells

MLB Load balancing performance
degradation due to improper HO
decisions

[49] LB in reactive SON cannot achieve the zero
latency required by 5G.

IC Reduce the interference among
cells that use the same spectrum

ICIC Poor interference coordination
degrades both resource allocation
to users and power control

[53] SON 5G challenges: Realistic interference
condition, practical receiver architecture,
channel state information reporting for
advanced interference management, practical
issues with joint scheduling, prospective
gains.

MM and HPO Automatically optimize the cell
resource management and reduce
the HO cost

MRO HO-related radio link connection
failures

[57,60] High ultra-dense small cell deployment
increases 5G problems: failure due to too
early HO, failure due to too late HO, failure
due to HO to wrong cell, unnecessary HO,
ping-pong HO.

RACHO Minimize the number of attempts
on the RACH channel

RACH Incorrect configuration increases
the access time and number
accesses failures

New features: Two-step RACH which
presents: preamble allocation problem,
resource mapping between preamble IDs of a
specific RACH Occasion and PUSCH Resource
Units problem, detected collision problem.

CCR Self-optimize the network
parameters to provide an optimal
capacity and an optimal coverage

CCO Transmit power and downtilt
settings optimization problem

[63] 5G Enhanced Mobile Broadband service
improvement thanks to powerful beamforming
and improved time-synchronization.

BO Ensure the connection between
the BSs and the core of the
network

– No radio controller node use in
LTE

[65] -The basic fronthaul performs over the CPRI.
-Incorporation of new wireless technologies to
overcome the use of basic fronthaul in 5G.

CO The same content is cached at BS – Analysis of user behavior [69] -AI solutions for type of content and path
loss/link budget prediction.
-Deduction facilitation of unobservable
channel state information.

RO Minimize the energy consumption
by offering a capacity
corresponding to the required
traffic demand.

ES Saving the energy expenses [71] -Intra-RAT and inter-RAT ES mechanism in
5G.
- Certain amount of time requirement in 5G.

CSONF Guarantee coordination between
two and more distinct functions
without conflict.

All
functions

Classification of the selected
inter-related parameters of
parametric conflict.

[74,77] Trust and robustness problems with SON
legacy in 5G.

COM and
autonomous
troubleshooting
process

-Overcome the outage scenario
and avoid the disruptions in
network using auto-detection and
auto compensation solutions.
-Ensure the fault identification of
cause on the basis of symptoms.

COD,
COC

Sleeping cell problem, fault
identification problem.

[81]–[82] Cell outage detection and new faults
identification based on ML solutions.
management and introduced the 5G NR with standalone operation
enhancements and basic Ultra-Reliable Low Latency Communications
(URLLC) functionality.

Release 16 exhibited several enhancements of URLLC and vari-
ous major enhancements and extensions to NR using SON specific to
LTE [92] – [93]. Furthermore, it introduced SON functions enhance-
ments such as RACH report, RLF report and ANR for network resource
optimization [94]. Consequently, current SON becomes insufficient and
needs to be improved to enhance the NM capabilities and fulfill 5G
requirements detailed in 3GPP Release 14 [95], e.g., very low latency
and higher data rate than 4G. Several SON breakthroughs in 5G must
be covered by providing:

• More transparent SON to gain user trust
12
• More coherent SON by adding new technology elements that
enable SON functions integration in RAN and Core Network [96].

• The architecture of 5G is more complex than 4G. The analysis of
conflict between SON functions and the autonomous coordination
algorithms used in the 4G framework will be inefficient with
5G. New self coordination approaches compatible with 5G must
be incorporated to minimize the potential conflicts in 5G SON
functions.

• More intelligence SON for 5G end-to-end visibility needs to be
elaborated to gather all the spatio-temporal information about
problems in network such as HO ping pong zone, congestion and
coverage gap locations [13,96].

• Large Timescale SON
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• New set SON solutions need to be set forward to settle 5G energy-
efficiency and multi-RAT) interoperation problems [13,96].

• New KPI is needed to exploit the full potential of SON functions
in 5G.

• Faster and proactive SON: the current classical SON, such as MLB,
is reactive when a problem occurs. It waits to observe and spot the
problem. To meet 5G real time requirements, the SON mode has
to be transformed to a proactive one so as to observe the situation
and predict the problem before it occurs.

• Other SON enhancements need to be undertaken like SON for
5G mmWave[97], SON for 5G MMIMO, SON for 5G NFV-based
networking and the addition of new Self-Protection use case for
5G.

Big data using ML tools can empower the reactive SON through
ransforming it to a proactive SON in order to meet 5G requirements. In
act, it can integrate three main skills to 5G network: full intelligence,
rediction of user behavior and dynamically organization between
etwork response and the Network Parameters [13].

Release 16 and Release 17 started to consider the integration of
L for the upcoming versions of 5G in order to empower storage and

omputing capability of new RAN and to enhance the SON through
he use of big data. In addition, Release 17 includes various features
nhancements related to Release 16, such as massive Multiple Input
ultiple Output (MIMO), unlicensed access and Integrated Access Back-

aul enhancements. Release 17 is attempting to introduce reduced
apability devices support for specific Internet of Things (IoT) use
ases [93,98] – [99]. Release 17 is still on decision and Release 18 is not
et considered. Thus, there will be several discussions about Release 18
etails. As a matter of fact, Release 18 features are likely to be approved
f by the end of 2021 [100]. (See Table 6.)
13
.8. Projects concerning SON application in 5G

Like 3GPP releases, there are various projects elaborated by dif-
erent organizations seeking to investigate the SON implementation in
ellular network. Table 7 plots 5G projects in each SON use cases.

AIMM, IEoT, AI-NET, AI-instorage are Celtic European projects
hich focus on AI incorporation in SON-5G cellular networks.

• AIMM [101]: AI-enabled Massive MIMO enhancements to im-
prove existing 5G RAN and beyond. It started in October 2020
and is supported to finish towards September 2022. This project
can be classified under RAPC use case.

• IEoT [102]: AI-integrated into edge computing frameworks to
build intelligent edge for dynamic, adaptive edge maintenance
and management and full potential utilization of each tier of the
IoT Edge architecture to meet different application requirements.
This project can be classified under CO use case. It started on
March 2020 and will finish in February 2023.

• AI-NET [103]: AI is used to complement traditional optimization
algorithms in order to not only minimize energy consumption of
edge-centric compute, but also provide high-performance services
which are deployed and operated at the network edge. This
project can be classified within the framework of RO use case. It
was brought to life in June 2020 and will finish in August 2024.

• AI-instorage [104]: AI – enabled smart storage services for future
renewable district energy networks. This project can be classified
under RO use case. It started in January 2021 and will finish in
December 2023.

SELFNET, COGNET, SESAME, COHERENT, ONE5G AI@EDGE, Ter-
Flow and ARIADNE are outstanding projects developed by 5GPPP.
hey are selected from several proposals received by the European
ommission Horizon 2020 Programme in response to 5G-PPP.

• SELFNET [105]: corresponds to SON management framework for
5G. It uses AI technology to combine virtualized and SDN infras-

tructure. It addresses several SON categories i.e., Self-protection
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Table 6
Evolution of SON in 3GPP.

Year Releases Description

2008 Rel.8 SON concepts and requirements, self-configuration category, ANR and PCI functions, SON architecture
2009 Rel.9 Self-optimization and self-healing categories, MLB, MRO, ICIC and RACH functions
2011 Rel.10 Self-healing functions: COD, COC, MLB and MRO enhancement, enhanced ICIC, ES, CCO
2012 Rel.11 New self-healing use cases: SR-NES, SH-BF, COM, CSONF, MRO enhancements, inter-RAT HO optimization, SON

coordination
2015 Rel.12 LTE utilization for emergency and security services enhancements, AAS feasibility, NM in centralized CCO, ES

enhancement in EUTRAN
2016 Rel.13 Operations, Administration, and Maintenance enhancements in distributed MLB and centralized CCO, SON/MRO

connection continuity, SON effectiveness on AAS deployment
2017 Rel.14 5G requirements, the new 5G system architecture
2018 Rel.15 5G management enhancement using SON, 5G NR with standalone operation enhancements, basic URLLC functionality
2020 Rel.16 ML integration for the upcoming versions of 5G
2021–2022 Rel.17 MIMO, unlicensed access and Integrated Access Backhaul enhancements, reduced capability devices support for specific

IoT use cases
2021–2022 Rel.18 Features will be approved by the end of 2021
T
S

capabilities against distributed cyber-attacks, self-healing capa-
bilities against network failures and self-optimization to improve
QoS and QoE of users. This project started in July 2015 and lasted
for three years.

• COGNET [106]: rests upon applying ML research to achieve a
high level of NM automation in 5G. It addresses different domains
related to SON use cases: usage prediction, recognizing error
conditions, security conditions and energy efficiency. This project
was launched in July 2015.

• SESAME [107]: relies on Cloud-Enabled Small Cell CESC con-
cept. It supports Small cells that integrate a virtualized execution
platform by providing powerful self-x management and executing
novel applications and services. This project emerged in July
2015.

• COHERENT [108] framework can control and manage load bal-
ancing task through the use of such abstracted network graphs
[109]. It started in July 2015.

• ONE5G [110]: addresses E2E-aware optimizations and advance-
ments for the network edge of 5G NR. It uses the novel E2E and
context-aware approaches to enhance mobility optimization and
provide fast agile load balancing mechanisms. Furthermore, it
operates on the interference management with D2D networks. It
started in June 2017.

• AI@EDGE [111]: focuses upon ensuring a secure and reusable AI
Platform for Edge Computing Beyond 5G Networks. This project
can be classified under CO use case. It was developed in January
2021.

• TeraFlow [112] creates new architecture of secure cloud-native
SDN controller to enhance beyond 5G. New SDN controller pro-
vides revolutionary SON automation features for flow manage-
ment and optical/microwave network equipment integration and
will use ML to secure autonomic traffic management. This project
can be classified under RAPC use case. It emerged in January
2021.

• EU-funded ARIADNE project [113] handles management prob-
lems in 5G when using scale and complex NR attributes in the
new frequency ranges. ARIADNE applies ML and AI to manage
NR communication technologies using D-Band frequency ranges.
This project can be classified under RAPC use case. It started in
November 2019 and will finish in October 2022.

rtificial AI/ML Driven Multi-Layer SON for 5G era systems [114]
tands for a research challenge project associated with the transfor-
ational Canada-Québec-Ontario partnership ENCQOR 5G. It seeks to
evelop and verify AI/ML driven approaches for automated design,
lanning and operations of full stack 5G era systems investing the
rinciples of self-organization and self-optimization. This project can
e classified under self-optimization category.

SONNET [115] corresponds to an MSCA-RISE-2020 project. It aims
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o amplify further the coverage zone of SON within the network. SON
able 7
ON Projects.
SON use case 5G projects

RAPC AIMM, TeraFlow, EU-funded
ARIADNE

CO IEoT,AI@EDGE
RO AI-NET,AI-instorage
Self-healing and self-optimization SELFNET
Usage prediction, recognizing
error conditions, security
conditions and energy efficiency.

COGNET

Self-x management SESAME
LB COHERENT, ONE5G, SONNET
Self-optimization Artificial AI/ML Driven

Multi-Layer SON for 5G era
systems

can enhance network sharing and Coordinated Multi-Point (CoMP)
technologies to reduce cost and energy per bit in legacy and future
emerging mobile technologies in 5G. It focuses also on the use of SON
in network slicing. It was introduced in January 2017 and will finish
in June 2021. This project can be classified under LB use case.

3. SON solutions applied in 5G

In this section, we are basically interested in works that apply
SON solutions in 5G network. Most of them rely on ML algorithms to
fulfill 5G requirements. The comparison between solutions reveals the
addition offered by ML and big data features to SON which is meant to
enhance QoS and QoE for users in 5G. This section is divided according
to SON use cases with description of the proposed solution for each
case.

3.1. Load balancing

Basically, SON aims to autonomously adjust the load balancing
among cells network. To fulfill this objective, article [116] used a user-
centric CoMP clustering algorithm and a novel re-clustering algorithm
to minimize the high load on cells. The idea rests on two stages. In
the first stage, the proposed CoMP SO clustering algorithm is used to
maximize the cluster size of small groups of cells in order to enhance
the spectral efficiency. The CoMP SO solution can also provide better
Signal to-Interference-Noise-Ratio (SINR) gains and additional back-
haul capacity. In the second stage, the novel re-clustering algorithm
is introduced to distribute the load from the highly loaded cell to
neighbor cells with a fewer load. A trade-off between the two SON
use cases, namely LB and IC yield the emergence of the trade-off
between two significant 5G requirements: user satisfaction and high
QoS (i.e., high spectral efficiency). User centric CoMP SO clustering

solution serves to maximize the spectral efficiency in order to enhance
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the QoS in 5G network, i.e., high system throughput according to high
number of loaded cells, high SINR and high backhaul capacity. Based
on load balancing SON solution, the re-clustering algorithm manages
to minimize the number of unsatisfied users, especially when cell load
exceeds 80%, but fails to keep the high system throughput.

Authors in [117] set forward a proactive load balancing method
called OPERA to solve the imbalance issue between macro and small
cells. From this perspective, Farooq et al. used a semi-Markov ML tech-
nique to predict the mobility of users then the future cell load in order
to proactively optimize key antenna parameters and cell individual
offsets, preempting congestion before it happens. Unlike [116], Farooq
et al. [117] proposed a proactive load balancing solution by predicting
the future cells load. This prediction can maximize the capacity better
than the reactive mode and estimate the unsatisfied users percentages
in order to quickly optimize the QoS and achieve better QoE. OPERA
can reduce the percentage of unsatisfied users to 0.35% compared to
the previous work which can reduce the percentage by 73.6%.

3.2. Coverage and capacity optimization

In order to optimize the capacity and the coverage in cells, several
works based on ML solutions were elaborated to accomplish a good
performance. Considering the constraints and limitations of traditional
channel modeling methods, article [118] displayed a scalable solution
to variation in geography environment. Deep Neural Network ML based
3D propagation model solution helps to accurately estimate the path
loss in order to optimize the radio propagation in modern wireless
communication systems. In fact, this realistic propagation model results
in a 25% increase of prediction accuracy better than the state-of-the-
art empirical propagation models. ML can pre-identify idiosyncrasies
of various propagation environments so as to estimate the path loss
or the Received Signal Strength (RSS) as opposed to the empirical
propagation models. Moreover, it does not extremely consume time and
money compared to ray-tracing based solutions. Deep Neural Network
can reach 12× decrease in prediction time compared to ray tracing.
Although the Deep Neural Network outperforms Decision Tree and
linear solutions in terms of error prediction even with sparse training
data, it presents the same prediction error as K-Nearest Neighbor (KNN)
for 1% training data.

The deployment of BSs is expected to be more difficult with the
increasing densification of small cells. Indeed, the unreasonable layout
of densely BSs affects the coverage performance, CAPEX and OPEX. In
this context, Dai et al. [119] identified a predictive Received Signal
Strength (RSS) solution in order to minimize the number of deployed
BSs. The solution is composed of two steps: First, predicting the RSS
through the extraction of the main features of the strength of RSS
and mapping the relationship between the extracted features and RSS
values. Second: using Genetic Algorithm (GA) solution to optimize the
coverage performance of the BS deployment taking into account the
geographical types and operating parameters of BS constrains.

3.3. Mobility management and handover parameters optimization

In order to provide seamless mobility and autonomously manage
HO demands especially with the emergence of 5G, SON MRO solution
is adopted to rapidly minimize the HO failures (i.e ping pong HO and
radio link failure HO) as low as possible. Unlike other works, Nguyen
et al. [120] focused on simultaneously minimizing these two failures
and eliminating the trade-off between them. Based on Apollonian circle
of mathematical tool resting upon modeling the wireless network as
geometry, Nguyen et al. proved the existence of optimal HO settings to
minimize both ping pong rate and RLF.

Predicting the users’ movement allows to rapidly manage HO de-
mands and proactively reduce the energy consumption, balance the
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load among cells, detect the abnormal behaviors HO and satisfy more
users. For this reason, SON needs to be reinforced by using ML so-
lutions. Article [121] proposed a practical process based on big data
and multiple linear and nonlinear ML models. This process intelligently
manages and forecasts the future HO demands in a huge number of cells
and detect abnormal behaviors HO. Tung et al.invested ML solutions
to successfully extract some observations on hourly number attempted
HO patterns from big data in order to evaluate the performance of the
network mobility. The work demonstrates the efficiency of ML solutions
in HO clustering, HO forecasting and abnormal HO detection. In HO
clustering, the addition of ML into SON ensures an intelligent collection
of the most similar HO behavior by exploration and detection of the
complex pattern of regularities in data. In HO forecasting and abnormal
HO detection, ML empowers SON by making it in the proactive mode.
As a matter of fact, SON becomes able to forecast future HO decisions
and detect the abnormal cells in order to proactively minimize the
HO failures. Despite the reinforcement added to SON by the proposed
Gaussian process ML solution, numerous other ML solutions could not
offer the desired efficiency. In fact, the results indicate that Auto-
Regressive, both linear regression and polynomial regression, Neural
networks are less efficient than Gaussian process ML with a high root
mean square error, especially in rapid changes and at an increasing
period of HO demand. Additionally, the difference between the mean
absolute error and the root mean square error of normalized and
real values results is high with respect to all proposed ML forecasting
solutions.

Article [122] proposed a recurrent deep learning architecture solu-
tion for mobility prediction. This solution is included in the holistic
HO cost evaluation function in order to minimize the holistic cost.
The holistic cost involves different parameters such as signaling over-
head, latency, user dissatisfaction and resource wastage. This paper
corroborates the effectiveness of the prediction solution to minimize the
holistic cost. HO has been predicted using Deep Learning ML solution,
(i.e., stacked Long-Short-Term Memory model (LSTM)) and MultiLayer
Perceptron (MLP). The results are suggestive that LSTM outperforms
MLP for all users and displays the same computational complexity
compared to MLP. The increase in number of hidden neurons and
the LSTM size leads to validation accuracy increase, but the further
increase in these parameters can yield over-fitting, which influences
the validation accuracy.

In order to provide an efficient offloading of cellular traffic to small
BSs, article [123] exhibited a scheme based on deep Q network which
predicts the traffic demand.

Caching the future contents leads to settle load issues and provide
a load balancing between cells. In order to maximize the QoE and
minimize the load, article [124] offered a Semi-Markov renewal process
ML solution to proactively cache future contents through predicting the
users mobility.

Article [125] analyzed and compared four mobility predictors,
namely Deep Neural Network, Extreme Gradient Boosting Trees, Semi-
Markov and Support Vector Machine in order to select the optimal
solution that grants a high prediction of future location of mobile users.
This analysis is governed by realistic synthetic human traces generated
by a Self-similar Least Action Walk mobility model. The results reveal
that Extreme Gradient Boosting Trees has the best accuracy with 90%,
which would offer a high energy saving gain and lower execution time.
Despite its high prediction accuracy, Extreme Gradient Boosting Trees
displays a high time of prediction compared to Semi-Markov model and
Deep Neural Network.

3.4. Resource optimization

This section is divided into ES optimization and resource allocation
optimization. The solutions correspond to GA for ES optimization, poly-
nomial regression for energy efficiency, Singular Value Decomposition
for blocks allocation, k-means for resource allocation, Polynomial Re-

gression for sub-channel allocation optimization and Markov decision
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for pilot pattern determination and Transfer learning for spectrum
assignment. Article [72] exhibited an AUtonomous pROactive eneRgy
sAving framework. This solution rests on Semi-Markov model-based
Spatio-temporal mobility prediction framework. The mobility predic-
tion can determine future cell loads and proactively schedule small cell
sleep cycles. Grounded on the mobility prediction results, AUtonomous
pROactive eneRgy sAving framework would proactively optimize en-
ergy saving in order to minimize the energy consumption in Ultra
Dense Heterogeneous Network by using GA solution. GA is considered
as the most suitable choice as it improves the chance to find the global
solution especially for highly nonlinear objective functions with a large
variable count and an enormous search space. The results disclose that
the solution grants a high mean prediction accuracy in 1 min of time
prediction interval. However, this accuracy decreases with the increase
of the prediction time interval which can influence the convergence
time of GA.

Article [126] elaborated big data-SON framework that optimizes the
energy efficiency in Ultra Dense network. It uses big data with polyno-
mial regression of supervised learning to improve energy efficiency in
several numbers of outdoor small cells. The idea lies in collecting, ana-
lyzing, optimizing and re-configuring data of huge number of outdoor
small cells in order to reduce the co-channel interference and the power
consumption. This solution is based on Data-Driven Dynamic Analysis
(D3 A) model and Interference Aware (IA) energy saving algorithm. It
can periodically collect the management data of small cells, estimate
cells neighbor with high interference and decrease its transmission
power in order to improve energy efficiency. This solution offers good
performance in terms of energy efficiency as well as throughput. In
fact, it provides 135% of energy efficiency and evolves throughput
more than the scheme without energy saving approach. However, it
presents a similar throughput to intuitive approach and similar energy
efficiency to static IA since it is used to optimize the energy saving in
this framework.

Article [127] invested GA in order to minimize the energy consump-
tion and optimize the average download latency of the Mobile Edge
Computing (MEC) through developing an effective caching placement
strategy.

Article [128] attempted to extract the information on user behavior
from a large quantity of log files, configuration files, database en-
tries/updates and monitoring alarms. The extraction of information can
solve the resources allocation problem to users in RANs. Singular Value
Decomposition solution is used to identify the physical resource blocks
that will be allocated to users.

Article [129] used k-means to cluster the mobile station in order
to solve the radio resource allocation problem to users. Then, it uses
a greedy algorithm in order to pick a number of mobile stations
from each cluster and locate them into Space-Division Multiple Access
schemes groups.

Article [130] attempted to solve the sub-channel allocation opti-
mization and power control problems, especially, sharing the same
spectrum between D2D links problem in order to optimize the energy
efficiency, spectral efficiency and delay.

To boost the pilot placement for the radio access in 5G vehicle to ev-
erything communications, article [131] proposed the Markov decision
process in order to determine a pilot pattern from different candidate
pilot configurations.

To create an insight base for user association, article [132] applied
cognitive radio engines and proposed a Transfer Learning to trans-
fer the expertise knowledge determined intelligently from spectrum
assignment.

3.5. Backhaul optimization

SON serves to optimize the offloading backhaul congestion in order
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to offer a flexible end-to-connectivity and low latency.
Article [133] adopted a user-centric backhaul solution that enables
users to associate with cells in order to satisfy their requirements
from RAN and backhaul network. This solution uses Reinforcement
Learning to optimize the Cell Range Extension Offset (CREO) value that
influences end-to-end network capabilities. This optimization aims to
maximize the user’s QoE with respect to three joint radio/backhaul
capabilities and constraints: throughput, latency and resilience. The
low transmitted power presented by small cells compared to the high
transmitted power of macro cell leads users to turn first the macro cell
then neglect the extra capacity provided by small cells. To motivate
users to rank and select first the small cells, cell range extension
mechanism is used to broadcast the CREO for the small cells to bereave
their positions and appeal users to opt for them. The solution provides
a high user satisfaction with low degradation in cumulative throughput
compared to state-of-the-art user-cell association schemes, especially
with SINR-based scheme. SINR-based scheme can satisfy users with
respect to latency and resilience, but not for cumulative throughput
because of macro-cell saturation and reluctance of users to select small
cells.

3.6. Caching optimization

Basically, caching content technique refers to the possibility of
caching the same contents in BS in order to reinforce the computation
capability close to Users Equipment. In order to optimize the caching
content intelligently, several works tend to use ML solution.

Article [134] proposed a proactive networking paradigm which
uses Singular Value Decomposition based Collaborative Filtering ML
solution. It helps to proactively cache files during off-peak demands
so as to reduce the backhaul congestion. The authors compared the
proactive to reactive low traffic load and proactive to reactive high
traffic load. The proactive mode satisfies requests more than reactive
mode. In addition, the very small users’ requests in the reactive mode
influence the backhaul load. Indeed, the reactive approach causes a low
generation of load on the backhaul. This influence does not help the
Collaborative filtering to draw any inference owing to a non-sufficient
amount of information about the popularity matrix. On the other side,
most of requests are satisfied when the traffic load is low. When the
contents are hidden, the requests are satisfied for low traffic load more
than high traffic load until they reach 80% of cache size. If they exceed
80%, the same satisfaction is obtained. The backhaul load keeps going
down until it reaches 100% of caching. Thus, it will not be loaded.
In fact, it decreases regarding the number of requests. For the impact
of popularity distribution, the backhaul load with reactive caching
outperforms the proactive caching when the popularity distribution
exceeds 50%.

Article [135] offered a context/trend-aware caching solution. It
uses Online Learning algorithm to predict the popularity informa-
tion investing users’ context in order to decide the caching content
replacement.

Article [136] recorded a proactive caching scheme to handle the
huge amounts of big data and to exploit them for content popularity
estimation using ML techniques.

Article [137] advocated a clustering based on GA to identify the
influential users in order to proactive cache their generated contents
and minimize the backhaul traffic load.

Article [138] proposed Transfer Learning algorithm to cache con-
tents in order to maximize the offload of the backhaul gains. Transfer
Learning algorithm helps transfer the hidden latent features from the

domain source to the target domain.
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3.7. Cell outage detection

Article [139] developed a cell outage detection solution. Based on
Hidden Markov Model, this solution captures the current states of
different BSs in order to estimate the Cell Outage.

Article [140] focused on cell outage detection in 5G H-CRAN.
This solution applies the modified Local Outlier Factor unsupervised
anomaly detection algorithm to identify cells outage and rectify it
immediately. The proposed solution is more efficient. In fact, Local
Outlier Factor considers 12% of normal cells as outage cells, while the
proposed solution only considers 6%. However, the proposed solution
presents a low percentage of false negative rates. In fact, only 3% of
abnormal cells are considered as outage cells.

Article [141] reported a cell outage detection solution based on
Artificial Neural Network like the autoencoder. It uses simulated data
that are provided by SON simulator and compares the results to Nearest
Neighbor ML technique results.

To detect the cell outage with high accuracy in Millimeter-Wave
communication, article [142] used Entropy Field Decomposition tech-
nique which yields a higher true positive results compared to the
k-means clustering solution.

3.8. Fault detection

The self-healing function in SON is expected not only to solve
eventual failures that might occur, but also to perform fault detection,
diagnosis and trigger automatically the corresponding compensation
mechanisms. The root cause analysis is a task fulfilled by operators in
order to provide customers with necessary QoS and keep them satisfied.
In this respect, authors in [143] foregrounded a fault detection solution
based on Bayesian network theory which minimizes the root causes of
faults.

3.9. Self-recovery of NE software

To analyze the effects of faults arrival, article [144] elaborated an
adaptive fault predictive framework based on Continuous Time Markov
Chain. It learns from past database in order to reduce the network
recovery time.

3.10. Synthesis

In this section, the previous discussed works are synthesized in
terms of ML solutions. Table 8 and Fig. 7 display a summary of ML
techniques and their respective SON use cases. Table 9 portrays the
taxonomy of SON Algorithmic Aspects in 5G.

The self-configuration function is designed to automate the con-
figuration of quasi-static parameters such as cell ID and neighbor
lists. Recall that self-configuration includes operational parameters, a
neighbor cell list, and radio parameters. In terms of ML technique,
OPC use case is typically invested by applying self-organizing maps and
miscellaneous learning methods [6,145]. Regarding self-optimization,
the deployed functions are devoted to optimize dynamic network pa-
rameters during operation based on the measurements received from
the network. The most popular use case in this category is load balanc-
ing function which manages the congestion by redistributing the load
between cells. For load balancing function, a relevant work is stated
above [116] incorporating an unsupervised clustering algorithm in a
high dense deployment scenario. It transfers the traffic from highly
loaded cells to neighbor cells in order to manage uneven traffic distri-
butions. It can be more suitable for future cellular networks. Despite the
5G QoS enhancements achieved by using user-centric dynamic CoMP
clustering SO algorithm, the proposed solution still requires certain
improvements to achieve a high user satisfaction through keeping
high QoS (i.e trade-off between spectral efficiency losses and load
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balancing gains). Based on averaged receive power levels, the decisions
of clustering are updated in longer time intervals. Besides, the system
model consists of one macro BS. These two points are considered as
limitations of applied methodologies and considered as assumptions.
Another solution OPERA [117] also focused on minimization in number
of unsatisfied users and achieves a maximum residual capacity in ultra
dense heterogeneous network. This work confirms the necessity for ML
to operate SON in proactive mode. In fact, the proactive mode in [117]
contributes to meet 5G user satisfaction and QoS requirements better
than the reactive in [116]. But, the use of deep neural network instead
of Semi Markov can enhance the prediction accuracy to provide better
optimization. The proposed mobility traces used to predict mobility
of pedestrians cannot be applied for vehicles. In fact, the vehicles
take a direction of the trajectory which is more deterministic and
regular. In CCO subsection, the work [118] attempted to optimize the
system propagation in order to boost the capacity and the coverage
in the environment geography. In [119], Dai et al.used ML to predict
RRS, as in [118], in order to enhance CCO SON. In fact, ML can
intelligently extract relevant feature information about strength of RSS
from the rich cellular data, and rapidly optimize the deployed BSs by
predicting the relations between these features and RSS values in order
to enhance the coverage performance and minimization CAPEX/OPEX.
Based on [118] – [119], the prediction idea gives certain SON im-
provement to optimize the coverage and capacity in cells. In addition,
the use of ML can intelligently provide a high accuracy prediction
and offer a low prediction error better than empirical propagation
models. This high prediction reinforces the CCO SON results. Despite
the effectiveness of ML solutions, it is necessary to choose the best
ML that maintains the lower error prediction. Moreover, these works
exhibit other solutions instead of features extraction such as the raw
geographical image [146] or extract further RSS information such as
Received Signal Strength Indicator (RSSI), Reference Signal Received
Quality (RSRQ) and Reference Signal Received Power (RSRP) to better
improve the prediction process [63]. In mobility management subsec-
tion, the work [120] purported to reactively manage HO in small cell
network by minimizing the HO failures simultaneously. The linear path
movement of users is considered as an assumption limitation because
users move in different directions. Compared to [120], the work [121]
elucidated the necessity to ML to manage the huge number of cells
generating huge data. ML can forecast the future HO and predict the
huge abnormal failures, in order to proactively heal them and make 5G
network more transparent and more coordinated. Unlike the reactive
mode, ML solutions can be implemented in SON to learn intelligently
the variation of collected HO behavior over the course of the day.
Based on the performance evaluation of the collected HO pattern, ML
can rapidly and intelligently minimize HO problems to reach the best
mobility management which ensures both user satisfaction and high
QoS. In spite of the effectiveness of the proposed proactive mode, it will
be better to apply other ML solutions that result in a lower difference
error percentage between normalized and real rather than the proposed
ML solution. The evaluation of the performance of each model is quite
thorny owing to limitations of calculated parameters number. In [122],
the HO prediction is also reported to assess and minimize the holistic
HO cost. Holistic HO cost includes signaling overhead, latency, call
dropping, and radio resource wastage. LSTM ML solution proved its ef-
ficiency and accuracy to solve mobility management problems based on
mobility prediction despite the over-fitting risk. Limited real-world data
sets and necessity to examine the trade-offs between computational
cost and real time decision-making stand for two obvious limitations
applied methodologies and considered assumptions. In addition to the
merits offered by ML solution in terms of enhancing SON mobility
management and solving HO problems, the mobility prediction using
ML can ensure also an efficient and proactive SON Load Balancing
and Caching Content as reported in the works [123] – [124]. The
work [125] provided another insight on the use of ML and data
collection in mobility prediction. Based on data traces collection, the

mobility prediction can efficiently promote the SON Energy Saving
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Table 8
SON solutions applied in 5G network.

SON use
cases

Ref+Y Proposed
solutions

Advantages Drawbacks Limitations of applied
methodologies and
considered assumptions

Objectives

Load
balancing

[116]
2016

-CoMP SO
clustering
algorithm
-Novel
re-clustering
algorithm

-System throughput,
SINR and backhaul
capacity maximization.
-Unsatisfied users
Minimization

-Some improvements
are required to reach a
high user satisfaction
with keeping high QoS
-Trade-off is needed
between spectral
efficiency losses and
load balancing gains

-One Macro BS in the
system model
-Decisions of clustering
are updated in longer
time intervals

- Spectral efficiency
enhancements
- Minimization of
unsatisfied users
number using
reclustering algorithm

[117]
2020

Proactive LB
based on
Semi-Markov
and GA

-Minimization in
number of unsatisfied
users and maximization
in residual capacity
better than the reactive

- SON LB and CCO
conflicts free operation

Deep learning is being
investigated heavily for
cellular networks
optimization instead of
the proposed
Semi-Markov

-Proposed mobility
traces cannot be
applied for vehicles.

Meeting 5G user
satisfaction and QoS
requirements

Coverage and
Capacity
Optimization

[118]
2019

Deep Neural
Networks

-Path loss estimation to
optimize the radio
propagation
- Use of realistic
propagation model

Necessity to select an
ML solution that
outperforms other ML
solutions in all cases

Using other RSS
measurements (such as
RSSI, RSRQ, RSRP),
height of BS.

3D radio wave
propagation modeling
to enhance the capacity
and coverage in the
environment geography.

[119]
2020

Predictive
received signal
strength solution
using KNN,
Random Forest,
SVM, MLP

High accuracy
prediction and low
prediction error
reinforcing CCO SON

Necessity to select ML
solution that
outperforms other ML
solutions in all cases

Using other RSS
measurements (such as
RSSI, RSRQ, RSRP), BS
Tilt angle, BS
Frequency, BS antenna
type, UE Measurements

Coverage performance
and minimization
CAPEX/OPEX

Mobility
management

[120]2020 Apollonian circle
mathematical
tool

Both ping pong rates
and RLF failures
minimization

Less efficient solution
than proactive mode

Users moving on a
linear path

Autonomous Reactive
management of HO

[121]
2017

Practical process
based on big
data and
diversity linear
and nonlinear
ML models.

Efficient HO clustering,
HO forecasting and
abnormal HO detection.

High difference
between mean absolute
error and root mean
square error of
normalized and real
values results for all
proposed ML
forecasting solutions.

-Limited numbers of
calculated parameters
-No comparison with
Deep Learning solution

Future HO demands
prediction and
proactive abnormal
behaviors HO detection

[122]
2019

Deep Learning ML efficiency to
provide high prediction
accuracy that enhances
SON mobility
management and solves
HO problems

Over-fitting risk -Limited real-world
data sets
-Studying the trade-offs
between computational
cost and real time
decision-making

Holistic cost
minimization

[125]
2019

Deep Neural
Network,
Extreme
Gradient
Boosting Trees,
Semi-Markov
and Support
Vector Machine
comparison

Extreme Prediction
using Gradient Boosting
Trees provides:
-High energy saving
gain and lower
execution time
-True performance
generated by predictors
when using SLAW
model

High time of prediction Lower predictability
rate caused by the
variations in the
number of BSs visited
by users

Estimation of future
location of mobile users

(continued on next page)
better than the reactive one. In fact, predicting future cell load with
ML can intelligently save a certain latency time to wake up from sleep
cycle. Moreover, the best selection of ML can reach highest QoS and
user satisfaction levels. A trade-off between the prediction accuracy and
predicted time can emerge despite the ML benefits offered to proactive
SON Energy saving. Compared to [125], the work [72] used one of
the ML solutions proposed by [125] for mobility prediction in order
to discern the necessity to predict future load in SON Energy Saving
enhancements. In addition to solving obstructions of reactive SON to
meet 5G Energy Saving requirements, Farooq et al.focused on solving
SON functions conflict i.e coordination between LB and CCO functions.
The GA AI corresponds to the most suitable choice that multiplies the
18
chance to find the global solution. The authors can take into account
the constraints of backhaul with cell loads and use D-SON. Li-Chun
et al. [126] used big data to enhance the current SON mechanisms
which are allowed only to indoor femtocells. This enhancement can
boost the energy efficiency of huge number of outdoor small cells. The
addition of both big data and ML can improve the energy efficiency and
achieve the highest total cell throughput despite the same performance
occasionally offered by intuitive approach. The work [127] presented
another branch of resource optimization, namely caching placement
optimization for MEC which contributes also to minimize energy con-
sumption. The near optimal caching offers a good performance in
terms of energy consumption optimization, especially with the high
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Table 8 (continued).
SON use
cases

Ref+Y Proposed
solutions

Advantages Drawbacks Limitations of applied
methodologies and
considered assumptions

Objectives

Resource
optimization

[72] 2018 Semi-Markov
model-based
Spatio-temporal
mobility
prediction and
GA

Solving obstructions of
reactive SON
-Coordination between
LB and CCO functions

Accuracy decreases
with the increase in the
prediction time interval

-C-SON architecture
-Backhaul constraints
taking into account
cells load

Mobility prediction to
optimize Energy saving

[126]
2016

Big data-SON
framework based
on Polynomial
Regression

SON mechanisms
enhancements with a
huge number of
outdoor small cell
-Energy efficiency and
total cell throughput
improvements

Similar throughput to
intuitive approach and
similar energy
efficiency to static IA

120 small cells are
densely incorporated in
one macro cell
coverage

Energy efficiency
improvement in several
number of outdoor
small cells

[127]
2017

Joint
optimization
framework based
on GA

Caching offers
-Good performance in
term of energy
consumption
optimization
High capacity of
backhaul
-Average download
latency optimization

Inefficient content
caching:
-Excessively caching of
a lot of unpopular
content
-Average delay cost and
Energy efficiency gains
degradation

MECs share the same
power supply in the
cell site

Caching placement
optimization to
minimize the energy
consumption

Backhaul
optimization

[133]
2016

User-centric
backhaul
solution based
on Q-learning

-Intelligent association
of users with small
cells considering the
offered capabilities of
the backhaul.
-High user satisfaction

Low degradation in
cumulative throughput

-One macro-cell with
three sectors and 21
small cells in fixed
locations
-Only three joint
radio/backhaul
capabilities

User-cell association
optimization

Caching
optimization

[134]
2014

Proactive
caching based
on Collaborative
Filtering

-Amount of satisfied
requests for low and
high traffic load
enhancements
backhaul load
minimization when the
requests of users
increase

-More than 80%, the
requests have the same
satisfaction for low and
high traffic loads
-Backhaul load with
reactive caching
outperforms the
proactive caching when
the popularity
distribution exceeds
50%

Limited capacity
backhaul links

Backhaul congestion
minimization

[135]
2016

Context-Aware
Proactive
Content Caching
based on Online
Learning

Predicting the
popularity information
to ensure a proactive
optimal placement of
content caching

Coordination between
caching entities or
central planner
deciding on the caching
content must be
performed

Multiple caching
entities in real caching
content placement
systems

Caching content
replacement decision

Self-Healing [140]
2018

Cell outage
detection in 5G
H-CRAN based
on modified
Local Outlier
Factor

Cells outage
identification and
rectify it immediately

Presence of error
percentage

Only RSRP, RSRQ,
SINR Channel quality
information

Cells Outage
identification and
rectification

[144]
2015

Adaptive fault
predictive
framework based
on Continuous
Time Markov
Chain

-Diagnosis and
compensation times
minimization
-More reliability and
high user satisfaction

High passage time from
state 1 to state 3

No comparison with
more intelligent
learning models
Time for failure is
exponentially
distributed

Effects analysis of faults
arrival in a cellular
network
capacity of backhaul. Otherwise, the system consumes a high energy
consumption when the capacity of backhaul is lower. In fact, it gathers
the maximum of hidden contents in BSs to minimize the overload on
the backhaul. This does not prevent the delay average cost reduction.
The inefficient content caching leads to the excessive caching of a lot
of unpopular content which effectively influences the average delay
cost as well as the energy efficiency gains. Among the most prominent
constraints in applied methodologies and considered assumptions, the
same power is shared by MECs in the cell site. In backhaul optimization
subsection, the work [133] proposed a Reinforcement Learning solu-
tion to optimize the user-cell association taking into consideration the
19
corresponding dynamic radio and backhaul conditions respecting users’
requirements. The use of Q-learning ML solution in distributed SON can
intelligently associate users with small cells through considering the
offered capabilities of the backhaul. Unlike the traditional SINR- based
scheme, the cooperation between Q-learning and distributed SON en-
ables the improvement at the level of user satisfaction as well as QoS in
spite of the low degradation in cumulative throughput. The algorithms
in distributed SON generally perform in small BSs, which offers a low
latency of transmission compared to centralized SON. Using Q-Learning
to promote SON ICIC mechanisms and CREO values generates the
enhancement in terms of users’ throughput. Using one macro-cell with
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Table 9
Algorithmic aspects of proposed works.

Ref+Y SON type Architecture SON function ML category Big data Data-sets type Multi-
objective

Optimization
Algorithms
method

[116] Reactive Centralized Spectral
Efficiency

Unsupervised
Learning

– - ✓ –

[117] Proactive Centralized
SON

LB, COO, CIO Reinforcement
Learning

– SLAW-model-
generated mobility
traces

– –

[118] Proactive SON for 3D
Propagation
Model

– Deep Neural
Network

– BS, Geographic
Information, UE
Measurements
data-sets

– –

[119] Proactive Architecture
of network
planning tool

CCO Supervised
Learning

– Real-world networks
of multiple locations

✓ Heuristic GA

[120] Reactive Distributed
SON

MRO, CIO – RLF related data – –

[121] Proactive – – Unsupervised
Learning

✓ Real dataset that
collected HO KPI of
more than 6000
cells

[122] Proactive Centralized
or
Control/Data
Separation

– Non-predictive
and Predictive
Deep Learning

– Benchmark
Real-world dataset

– Stochastic
gradient-decent
algorithm and
Adam optimizer

[125] Proactive Centralized
SON

ES Supervised
learning

– Realistic SLAW
mobility model

– –

[72] Proactive Centralized
SON

ES, CIO Markov Model – Realistic SLAW
mobility model

– Heuristic GA

[126] Proactive Centralized
SON

ES – ✓ – – IA energy saving
algorithm and
D3A Model

[127] Reactive Hybrid SON
in MEC
servers’
caching
system

– – – MEC servers – Heuristic GA

[133] Reactive Distributed
SON

CREO values,
ICIC
mechanism

Reinforcement
Learning

– – – Q-learning

[134] Proactive Distributed
SON

ICIC Supervised
Learning

– –

[135] Proactive Hybrid SON – Online Learning – MovieLens dataset – Heuristic m-CAC

[140] Reactive Centralized
SON

COD Unsupervised
Learning

– User, RRH/ACE,
NodeC, Drive Test
Data-set

– –

[144] Proactive Ultra Dense
Heteroge-
neous
Complex
Cellular
Network

– Reinforcement
Learning

– Database of network
failures

– –
three sectors and 21 small cells in fixed locations and focusing only on
three joint radio/backhaul capabilities stand for the basic shortcomings
of applied methodologies and considered assumptions. To offload the
backhaul links and optimize their capacity, the work [134] highlighted
a proactive content caching in small cell network based on popular
estimation. Compared to [133], Ejder et al. [134] and Kader et al. [136]
attempted to optimize backhaul load through proactive SON caching.
Compared to reactive mode, the proactive content caching reinforces
the amount of satisfied requests for low and high traffic loads in
addition to the decrease on the backhaul load when the requests of
users increase. The proactive mode is also developed in [135]. It aims to
estimate the popularity information using Online Learning solution in
order to cache the contents proactively. The proposed online algorithm
outperforms the state-of-the-art solutions. In fact, it regularly learns the
context-specific connected user, then it ensures an optimal placement
20
of content caching. In real caching content placement systems, the
proposed solution needs to be applied in multiple caching entities. To
achieve more optimal cache contents, coordination between caching
entities or central planners deciding on the caching content needs to
be carried out. In self-healing subsection, the cell outage management
is a key factor proposed in SON. The work [140] invested modified
Local Outlier Factor to detect cells outage in H-CRAN architecture.
Peng et al.set forward a centralized self-organized COD architecture.
Modified Local Outlier Factor ML algorithm makes the SON COD more
accurate and intelligent despite the existence of multiple errors in cell
outage consideration. In Self healing context, the work [144] dealt
with Self-recovery of NE software. It proposed Continuous Time Markov
Chain solution to analyze and evaluate the cells behavior and the effects
of faults on them. Thanks to proactive diagnosis, the proposed solution
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can minimize the diagnosis and compensation times, which will provide
more reliability and high users’ satisfaction.

4. Open issues and future trends

This section is devoted to highlight the opportunities and trends
related to SON functions implementations beyond 5G. We address the
new paradigm of Self-Sustaining Network (SSN) and the surrogate of
ON in 6G. The scale of 5G beyond deployments will trigger new
hallenges in terms of higher autonomous configuration capabilities.
he SON architectures in 5G retain the support of Network Data
nalytic Function (NWDAF) to empower AI using centralized cloud-

fication [147]. While 6G networks introduce a new vision of an
ntelligent plane providing native AI support for the whole mobile
ommunication system, this vision can be fulfilled by moving intelli-
ence to the edge computing resources with embedded ML capabilities.
n [147], the authors incorporated a clean slate approach to define
G E2E system architecture providing native support for intelligence
nclusion. Network AI Management and Orchestration (NAMO) is the
ey design for intelligent plane inclusion, which is responsible for
rchestrating and managing heterogeneous and distributed resources
s well as defining a universal mechanism to provide diversified AI
ervices. However, further research need to be conducted in order to
nable a collaborative ecosystem with all kinds of AI applications as
nvisioned by 6G architecture.

.1. Opportunities and challenges for future works

Even though SON stands for a promising tool enabling autonomous
nd intelligent cellular networks, there are still enormous challenges
o tackle and overcome. According to [148], in order to fulfill the
spirations of fully intelligent and autonomous beyond-5G network,
ive major challenges are addressed: (i) training issues, (ii) lack of
ounding Performance, (iii) lack of Explainability, (iv) uncertainty in
eneralization and (v) lack of interoperability. The training overhead
eeds to be investigated and reduced in order to maintain the via-
ility of PHY/MAC layer applications, through applying new training
lgorithms and neural network architectures. The second challenge is
elated to exploring the adoption of tolerable and graceful degradation
n a worst-case scenario. Third challenge is associated with the lack of
xplainability of the correctness and the behavior of AI tools. This refers
ssentially to the fact that they behave as black boxes and represent a
tumbling block when AI is applied for real-time decision making.

The fourth challenge corresponds to the uncertainty of the data-set
or training the model. In order to minimize uncertainty in general-
zation, a canonical requirement could involve the comparison of the
I model output against a well-understood theoretical performance
ound, such as a maximum likelihood. However, the fifth challenge
ends to mitigate the increasingly complex dependencies of AI-based
ellular networks by investigating the interoperability and hence the
onsistency among AI-modules from different vendors.

.2. Self-sustaining network in 6G

5G beyond and 6G will require a paradigm shift from classical SON
o SSN. The strict spectral efficiency, reliability, and latency require-
ents associated with 6G imply an increasingly autonomous network.
ervasive AI is quite helpful in building up sustainable networks. To
ccomplish this target, AI needs to be integrated with a game theory
o create a distributed learning mechanism where AI agents interact
o teach and learn from each other [149]. To autonomously achieve
he perpetuity of 6G KPI, SSN must be able to maintain their resources
sage and management through gathering energy, efficiently exploiting
pectrum and adjusting their functions with the use of the recent
evolution in AI solutions [150].
21
5. Conclusion

This research paper elaborates a comprehensive and exhaustive
overview on SON paradigm, its different definitions, its three main
categories and its most prominent use cases applied in 5G cellular
network, the SON architectures and the addition of virtualization to H-
SON architecture in order to make it more scalable, flexible, open and
to provide more intelligence to 5G network. Furthermore, this survey
illustrates the challenges that SON needs to face in order to be applied
in 5G cellular networks. It elucidates the necessity to use ML techniques
in order to take decisions intelligently and empower the SON legacy to
efficiently meet 5G requirements. In addition, it exhibits a few works
that handle some use cases of SON in 5G and ML solutions to face SON
challenges.

At this stage of analysis, we would assert that this synthesis would
be valuable in terms of opening further fruitful lines of investigation
and offering promising research directions. Indeed, our work is a step
that may be built upon, extended and taken further as it paves the
way and lays the ground for future works to enact more promising
applications in the area in a way that 5G Beyond and 6G would
transcend SON and would use a new paradigm SSN to perpetuate the
6G KPIs.
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