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Abstract
As we make progress toward the 5G of wire-

less networks, the bit-per-joule energy efficien-
cy (EE) becomes an important design criterion 
for sustainable evolution. In this regard, one of 
the key enablers for 5G is massive multiple-input 
multiple-output (MIMO) technology, where the 
BSs are equipped with an excess of antennas 
to achieve multiple orders of spectral and ener-
gy efficiency gains over current LTE networks. 
Here, we review and present a comprehensive 
discussion on techniques that further boost the 
EE gains offered by massive MIMO (MM). We 
begin with an overview of MM technology and 
explain how realistic power consumption mod-
els should be developed for MM systems. We 
then review prominent EE-maximization tech-
niques for MM systems and identify a few limita-
tions in the state-of-the-art. Next, we investigate 
EE-maximization in “hybrid MM systems,” where 
MM operates alongside two other promising 5G 
technologies: millimeter wave and heterogenous 
networks. Multiple opportunities open up for 
achieving larger EE gains than with conventional 
MM systems because massive MIMO benefits 
mutually from the co-existence with these 5G 
technologies. However, such a co-existence also 
introduces several new design constraints, making 
EE-maximization non-trivial. A critical analysis of 
the state-of-the-art EE-maximization techniques for 
hybrid MM systems allows us to identify several 
open research problems which, if addressed, will 
immensely help operators in planning for ener-
gy-efficient 5G deployments.

Introduction
Expectations from 5G Cellular Networks

The information and communication technology 
(ICT) industry is making rapid progress toward 
fifth generation (5G) wireless networks, which 
are expected to integrate almost everything 
across the globe into the Internet. 5G systems 
are expected to provide peak data rates up to 20 
Gb/s, average data rates greater than 100 Mb/s, 
and connectivity for a huge number of Internet-of-
Things devices per unit area.

Energy consumption becomes a critical con-
cern for 5G networks because the ICT sector 
already contributes significantly toward the glob-
al carbon footprint. In this regard, an important 
design criterion for 5G networks is bit-per-joule 

energy efficiency (EE), defined as

EE = R/P,	 (1)

where R is the system throughput and P is the 
power spent in achieving R. The recently pro-
posed massive multiple-input multiple-output 
(MIMO) technology offers multiple orders of 
spectral and energy efficiency gains over current 
LTE technologies, and is therefore a promising 
enabler for 5G.

Overview of Massive MIMO Technology
Massive MIMO (MM) is a multi-user MIMO 
(MU-MIMO) technology where K user equip-
ments (UEs) are serviced on the same time-fre-
quency resource by a base station (BS) with M 
antennas, such that M >> K (Fig. 1). Deploying a 
large number of antennas at the BS results in a 
propagation scenario called favorable propagation, 
where the wireless channel becomes near-deter-
ministic because the BS-to-UE radio links become 
near-orthogonal to each other [1]. This is because 
the effects of small-scale fading, intra-cell interfer-
ence and uncorrelated noise disappear asymptoti-
cally in the large M regime. By increasing the size 
of the system, that is, (M, K), large multiplexing 
and array gains can be achieved under favorable 
propagation. To understand how, let us consider 
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Figure 1. Massive MIMO: a multi-user MIMO tech-
nology where K UEs are serviced by a BS with 
M >> K antennas.
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the uplink (UL) and downlink (DL) transmissions 
in a single-cell MM system. If CUL and CDL are the 
asymptotic UL and DL Shannon capacities for a 
flat-fading MU-MIMO channel under favorable 
propagation, we have [2]

CUL = log2(1+ puMβk,UL ),
k=1

K

∑

CDL = max
(ak≥0, ak≤1)∑

log2(1+ pdMakβk,DL ),
k=1

K

∑
 	
(2)

where pu and pd are the average UL and DL trans-
mit signal to noise ratios (SNRs), bk,UL and bk,DL 
represent the large-scale fading coefficients for 
the kth UE on the UL and DL, respectively, and 
{ak} is a set of variables that should be optimized 
to obtain CDL.

When appropriate power control strategies are 
used to normalize the effect of bk, (see [3], for 
example), the UL capacity simplifies to Klog2 (1 
+ Mpu). A similar expression can also be obtained 
on the DL. This simplification leads us to two 
important conclusions: we can achieve O(M) 
array gains, that is, we can reduce the UE trans-
mission power proportionately with M and still 
achieve the same per-UE throughput as with a sin-
gle-antenna BS, and O(K) multiplexing gains, that 
is, we can increase the system throughput propor-
tionately with K by multiplexing parallel streams 
of data to the UEs. MM systems can also achieve 
large EE gains over current LTE systems. Before 
we explain why, a few guidelines are presented 
on how power expenditure should be modelled 
for MM systems.

Modelling Power Consumption in 
Massive MIMO Systems

The sum power consumption P, aggregated over 
UL and DL transmissions in an MM system, can 
be modelled as

P = PPA + PC + Psys,	 (3)

where PPA represents the total UL and DL power 
consumed by the power amplifiers (PAs) at the 
BS and the UEs, PC represents the total UL and 
DL circuit power expenditure, and Psys represents 
the remaining system-dependant component in 
P. While PPA accounts for the sum power expen-
diture on RF transmissions, PC accounts for the 
circuit power expenditure on RF chain compo-
nents, such as filters, mixers, and synthesizers, as 
well as baseband operations, such as digital up/
down conversion, precoding, receiver combin-
ing, channel coding/decoding, and channel esti-
mation. Psys accounts for the power expenditure 
on site-specific and architecture-specific factors, 
such as BS architecture, power supply, cooling 
system, backhaul, and other control equipment. 
Psys will play an important role in characterizing EE 
for 5G networks because several BS and UE types 
will simultaneously operate under an architecture 
with multiple cell sizes and access technologies. 
Different MM systems generally exhibit different 
PPA, PC, and Psys values, depending on the size of 
the system and the type of hardware components 
used, including transceivers, PAs, RF chains, back-
haul equipment, and switches. Example values 

can be found in [3, 4] and references therein.
Note that PC in MM networks should not be 

modelled, as per conventional practice, as a con-
stant term that is independent of (M, K), because 
the hardware requirements and the number of cir-
cuit operations in the system grow with M and K. 
For example, with the conventional one RF chain 
per antenna design used in current LTE systems, 
the number of RF chains at the BS and the UEs 
grows affinely with M and K, respectively. Addi-
tionally, computational requirements for various 
baseband operations are functions in (M, K). For 
example, as illustrated in [3], O(MK2) computa-
tions are required for zero-forcing (ZF) precoding 
as well as minimum mean squared error (MMSE) 
channel estimation. Therefore, PC should be treat-
ed as a function in (M, K).

Energy Efficiency Aspects of Massive MIMO
When compared to conventional MU-MIMO 
systems under LTE, MM systems can achieve 
large EE gains in two major ways, both based on 
increasing the size of the system, that is, (M, K). 
First, for a given system throughput, transmission 
power of the UEs in MM systems can be reduced 
significantly by increasing M (Eq. 2) well beyond 
the maximum limit of eight antennas per BS in cur-
rent LTE systems. Second, by increasing K, large 
throughput gains can be achieved in MM systems 
(Eq. 2). These gains can be achieved at low lev-
els of circuit power expenditure because simple 
linear processing techniques, such as maximal-ra-
tio combining (MRC) on the UL and maximal-ra-
tio transmission (MRT) on the DL, can achieve 
near-optimal throughput performance [1]. The 
resulting EE levels are generally much higher than 
in conventional MU-MIMO systems because the 
latter systems employ complex signal processing 
techniques, such as maximum likelihood (ML) 
detection on the UL [5] and dirty paper coding 
(DPC) on the DL, to achieve optimal capacities. 
Such complex techniques can consume prohib-
itively large computational power when the size 
of the system is increased. For example, computa-
tional power for ML detection increases exponen-
tially with K [5].

However, increasing (M, K) in MM systems 
does not always ensure improvements in EE, 
because the circuit power expenditure, that is, 
PC, also increases with (M, K). Consequently, 
when the UE transmission powers are reduced by 
increasing M, we can achieve EE improvements 
only if the reduction in UE transmission power 
dominates the resulting increase in PC. Similar-
ly, when the system throughput is increased by 
increasing K, EE improvements can be achieved 
only if the increase in throughput dominates the 
resulting increase in power expenditure. See [3, 
4] for examples on how M and K in MM systems 
can be optimized to achieve large EE gains over 
current LTE systems.

Designing Energy-Efficient 
Massive MIMO Systems

As we can observe from Eq. 1, EE of an MM sys-
tem can be maximized by achieving near-optimal 
throughput performance at low power consump-
tion levels. Based on this analogy, a number of 
research directions have been pursued for the 
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design of energy-efficient MM networks. A few 
methods devise low-complexity algorithms for BS 
operations such as multi-user detection, precod-
ing, and user scheduling, so as to minimize power 
expenditure in the system. A few other methods, 
such as transceiver redesign, antenna selection, 
and power amplifier dimensioning, focus on 
improving resource utilization so as to relax hard-
ware requirements, and hence power expenditure 
in the system. This section reviews some of the 
most prominent EE-maximization techniques for 
MM systems and identifies a few open research 
problems.

Low-Complexity BS Operations
Due to favorable propagation in the large M 
regime, simple linear processing techniques, such 
as MRC on the UL and MRT on the DL, and sim-
ple user scheduling algorithms, such as random 
and round-robin scheduling, achieve near-optimal 
throughputs [1]. These simplifications keep the 
circuit power expenditure low, thus yielding sig-
nificant EE gains over conventional MU-MIMO 
systems with computationally intensive signal pro-
cessing schemes, such as ML detection and DPC, 
and complex user scheduling algorithms, such as 
random beamforming and semi-orthogonal user 
selection.

One of the major research challenges for 
massive MIMO is the design of low-overhead fre-
quency division duplex (FDD) precoders. Unlike 
in time division duplex (TDD) systems, precoders 
in FDD systems cannot exploit channel reciprocity 
to estimate DL channels based on UL channels, 
because the UL and DL communications occur 
on separate frequency bands. FDD precoders 
cannot also rely on pilot signalling and feedback 
from the UEs because this consumes at least (M 
+ K) symbols per coherence interval, making such 
signalling and feedback mechanisms impractical 
for high mobility scenarios. A few low-overhead 
FDD precoders, which assume channel sparsi-
ty for overhead reduction, have been proposed 

recently [6], but such precoders are limited to 
high frequency bands, such as millimeter wave, 
where channel sparsity assumptions are valid. 
Worldwide, since there are many more licenses 
for FDD than TDD, progress on low-overhead 
FDD precoders will promote wider acceptance of 
MM as a future technology.

Scale the Number of BS Antennas
When the number of antennas at the BS is 
increased, the system throughput R can be 
improved because higher multiplexing gains are 
achievable. However, observe from our discus-
sions above that the circuit power PC also increas-
es with M. Nevertheless, increasing M can still be 
an energy-efficient strategy for MM networks if 
we increase R sufficiently that it dominates the 
increase in PC. Although not obvious from initial 
observations, this can be done by increasing the 
DL transmission power over a certain scaling win-
dow. To understand why, let us study how DL 
transmission power can be optimized for maxi-
mizing energy efficiency.

As we can observe from Eqs. 1–3, the system 
EE is a non-linear function in the DL transmission 
power because the EE metric takes a fractional 
form where the numerator, that is, the system 
throughput R, and the denominator, that is, the 
power consumption P, are both functions in the 
DL transmission power. Therefore, to optimize 
the DL transmission power for EE-maximization, 
we can use standard non-linear optimization 
methods, such as gradient descent [7]. Optimal 
DL transmission powers would be different for 
different (M, K) because the system EE depends 
on (M, K) as well. Using this methodology, in 
Fig. 2 we plot the maximum achieved EE and the 
corresponding DL transmission powers when M 
is increased from 5 to 500. For the simulation, 
we assume K = 30, MRT precoding, and use the 
power consumption model given in [3].

From Fig. 2 we clearly observe that there exists 
a scaling window within which the system EE 
can be increased by simultaneously increasing 
M and the DL transmission power. The scaling 
window is governed by a certain threshold M* 
on the number of BS antennas, beyond which R 
approaches near-optimal bounds but PC contin-
ues to grow unboundedly with M. As a result, we 
observe that the system EE attains a peak level at 
M* and decreases gradually with M, even if we 
increase the DL transmission power. Note that 
the scaling window can be expanded by reducing 
the RF chain requirements at the BS because this 
results in reduced PC levels. Alternatively, if the 
transceiver design ensures very low circuit power 
expenditure, it may also be possible to achieve 
improvements in the system EE by reducing the 
DL transmission power with M. However, such 
a scenario relies heavily on the future of ener-
gy-aware transceiver design.

Minimize PA Power Losses
Significant EE gains can also be achieved by min-
imizing PA power losses. To understand how, let 
us consider DL transmissions in an MM system. 
The total power expenditure on PAs at the BS can 
be obtained as PPA = Pin/h, where Pin is the input 
power to PAs and h is a measure of PA power 
losses (also referred to as the PA efficiency). For 

Figure 2. Maximum achievable sum EE vs. number of BS antennas in an MM 
system. As illustrated, there exists a scaling window, over which the sum EE 
can be improved by increasing the number of BS antennas.
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traditional PAs in current LTE systems, h depends 
on the PA output power p and is given by

η= ηmax p / pmax
in [8], where hmax is the maximum PA efficiency 
and pmax is the maximum PA output power. The 
expression for h provides two important conclu-
sions: 
•	 h is maximum, that is, h = hmax when p = pmax
•	 h < hmax when p < pmax.
Average p in current LTE systems can be much 
lower than pmax because OFDM waveforms 
have a high peak-to-average-power ratio (PAPR) 
requirement [9]. Consequently, average PA effi-
ciencies, that is, h, can be much smaller than hmax. 
Smaller h results in higher PPA, and therefore in 
smaller EE (Eqns. 1, 3). EE gains from minimizing 
PA power losses, that is, from maximizing h, can 
be significant because h can be as low as 5 per-
cent in LTE [10].

To minimize PA power losses, several PAPR 
reduction techniques, such as proposed in [9], 
can be attempted. In addition, few low-PAPR 
non-orthogonal waveforms, such as the recently 
proposed single carrier modulation (SCM) [11], 
can be used. However, designing appropriate 
non-orthogonal waveforms continues to be a 
major research challenge because most of the 
recently proposed waveforms suffer from practi-
cal limitations, such as long filter lengths and com-
plex receiver techniques [11]. Alternatively, PA 
linearity requirements can also be relaxed using 
constant envelope signals, but generating such sig-
nals is an unresolved challenge as of this writing.

Minimize RF Chain Requirements at the BS
Conventionally, MIMO precoding and beamform-
ing are performed digitally in the baseband. Since 
digital processing requires dedicated baseband 
and RF chain components for each antenna ele-
ment, BS transceivers conventionally adopt a one 
RF chain per antenna design. Such a design results 
in significant circuit power consumption in the 
MM regime because the number of RF chains 
at the BS increases affinely with M. Therefore, 
minimizing RF chain requirements at the BS is an 
attractive strategy to improve EE in MM networks. 
Prominent techniques to reduce RF chain require-
ments include hybrid precoding, antenna selec-
tion, and transceiver redesign. Hybrid precoding 
techniques are generally built on channel sparsity 
assumptions, and hence are discussed below in 
the context of millimeter wave systems.

Antenna Selection: Antenna selection is a sig-
nal processing technique that improves through-
put in a system while simultaneously reducing the 
number of RF chains at the BS [12]. Basically, a 
subset comprising N out of the M BS antennas is 
selected based on a predefined selection criteri-
on, for example, to maximize throughput, SNR, or 
EE. Antennas in the selected subset are connect-
ed to RF chains for further processing. Since the 
number of RF chains is reduced from M to N, cir-
cuit power expenditure in the system is reduced.

In Fig. 3, we propose a guideline to design traf-
fic-adaptive antenna selection methods for energy 
efficiency in a massive MIMO system. To study 
how the system EE varies with traffic demands, 
we plot the maximum achievable EE as shown 
in Fig. 2, but for K values ranging from 6 to 50. 

To obtain the maximum EE values for each K, we 
make the same assumptions and follow the same 
optimization procedure as done in Fig. 2. When 
K is increased, the system EE increases because 
higher throughputs can be achieved if more UEs 
are scheduled. However, since an increase in K 
also results in increased PC, we observe that the 
per-unit increase in EE decreases with K. Addition-
ally, we observe that the maximum achievable EE 
curves attain different peak levels when M is opti-
mized for different K values. Specifically, when K 
is increased from 6 to 50, optimal M increases 
from 63 to 92 and the peak EE increases from 3.6 
to 9.2 Mb/Joule.

Assuming that the maximum expected traf-
fic demand corresponds to K = 50, it is natural 
to expect that the BS is deployed with a total of 
92 antennas. For such a BS, the above variation 
in optimal M, that is, from 63 to 92, amounts to 
about 30 percent of the total number of deployed 
antennas. Therefore, although it may seem other-
wise from an initial observation, the demonstrated 
variation in optimal M with K is indeed significant. 
Based on this observation, we can design traf-
fic-adaptive antenna selection methods, where 
the BS can dynamically activate a subset of its 
antennas with changing traffic demands in the 
system. The BS can navigate along the antenna 
selection curve in Fig. 3 for sustained operation at 
peak EE levels, even if traffic demands vary with 
time. It is important to note that the curve for 
traffic-adaptive antenna selection shown in Fig. 3 
does not necessarily need to be a monotonically 
increasing function in K because the power con-
sumption parameters assumed in our simulation 
(and given in [3]) may not always be accurate. 
Real-time data from network operators should be 
utilized in developing accurate power consump-

Figure 3. Guideline to design traffic-adaptive antenna selection schemes for 
EE-maximization in massive MIMO systems.
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tion models, and thereby in devising appropriate 
antenna selection curves.

Current literature on antenna selection for 
massive MIMO is mostly confined to simple sin-
gle cell scenarios (see [12] and references there-
in). Performance trade-offs introduced by design 
limitations, such as CSI availability, pilot contam-
ination, and antenna correlation, are not clearly 
understood.

Redesign Transceiver Architecture: An alterna-
tive strategy to reduce RF chain requirements at 
the BS is to redesign the BS transceiver architec-
ture. In this direction, a few single RF chain trans-
ceivers have been recently designed, although 
at the cost of some serious practical limitations. 
For example, the electronically steerable parasit-
ic antenna array proposed in [13] operates with 
a single RF chain, but supports a limited set of 
modulation schemes and requires almost twice 
the number of antennas than in conventional 
transceivers. Similarly, [14] proposes a single RF 
chain transmitter based on a two-port matching 
network, but the transceiver performance is sub-
ject to power losses in the matching network 
and mutual coupling in the antenna array. Conse-
quently, although transceiver redesign offers great 
promise to improve EE in MM networks, current 
literature cannot be considered complete. Further 
research is required on addressing several design 
issues and on overcoming any implementation 
challenges thereof.

Energy Efficiency in 
Hybrid Massive MIMO Systems

So far, we have explored multiple opportunities 
for EE-maximization in conventional MM systems, 
that is, wireless systems where MM is the only 
enabling 5G technology. Several other technolo-
gies, such as millimeter wave (mmWave), heter-
ogenous networks (HetNets), energy harvesting 
(EH), full duplex, and cloud-based radio access, 
are also emerging as potential enablers for 5G. 
Each of these offers its own unique set of per-
formance benefits: mmWave operations offer 
throughput enhancements via larger transmission 
bandwidths; EH allows for low battery power 
expenditure via renewable energy usage; and 
HetNets offer large throughput gains via network 

densification. Therefore, it is natural to expect that 
future 5G architectures will host wireless systems 
enabled by MM as well as other emerging 5G 
technologies. We refer to such systems as “hybrid 
MM systems” and investigate potential opportuni-
ties for EE-maximization in this section.

We explain how MM benefits mutually from 
two promising 5G technologies, namely mmWave 
and HetNets, and proceed to study EE-maximi-
zation in the corresponding hybrid MM systems. 
Some of the unique properties of these systems 
are studied to understand why new opportuni-
ties and design constraints emerge from an EE 
perspective. A critical review of the state-of-the-
art allows us to identify several open research 
problems which, if pursued, will immensely help 
operators in touching unexplored avenues and in 
understanding crucial design considerations for 
hybrid MM deployments.

Millimeter Wave (mmWave)-Based 
MM Systems

The mmWave spectrum ranging from 30 GHz to 
300 GHz is now being investigated for 5G opera-
tions because the sub-3GHz bands have become 
overcrowded and there is a need for additional 
spectrum to accommodate future traffic demands. 
By moving to the mmWave spectrum, significant 
throughput gains and latency reductions can be 
achieved because large bandwidths of the order 
of multiple GHz are available; bandwidths up to 
7 GHz are available in the 60 GHz band. Typi-
cally, mmWave channels exhibit huge reflection 
and absorption losses, poor diffraction, and low 
channel coherence times. As a result, when com-
pared to sub-3GHz bands, mmWave channels 
experience much higher channel correlation, sig-
nal attenuation, and sensitivity to blockage [6, 15].

Benefits from Co-Existence: Massive MIMO 
implicitly offers the highly directional and adaptive 
transmissions required to improve signal strength 
and suppress interference in the blockage-sen-
sitive environments at mmWave bands. On the 
other hand, mmWave makes massive MIMO real-
izable because the small wavelengths at mmWave 
frequencies allow a large number of antennas to 
be fit into very small form factors [6], and the 
near-LOS channels in mmWave MM networks 

Figure 4. Novel precoding techniques for mmWave massive MIMO systems: a) Two-stage digital precoding techniques can reduce CSI 
overhead by forming UE groups, each group comprising UEs with the same covariance eigenspace; b) Hybrid analog-digital pre-
coding techniques can exploit channel sparsity to reduce RF chain requirements at the BS.
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can be estimated using direction of arrival (DoA) 
of the incident waves at the BS, thus potentially 
eliminating the need for pilot reuse and the result-
ing pilot contamination [15].

There are two major differences between 
mmWave-based MM systems and traditional 
mmWave systems. First, most traditional mmWave 
systems achieve directional transmissions using ana-
log phased arrays with a limited number of anten-
nas [16]. In contrast, BSs in mmWave MM systems 
employ digital beamforming and spatial multiplex-
ing with a much larger number of antennas. Sec-
ond, due to strong signal attenuation and blockage, 
traditional mmWave systems are limited to point-to-
point or short-range indoor services, such as radar, 
backhaul, local area networks (see IEEE 802.11ad), 
and personal area networks (see 802.15.3c) [16]). 
In contrast, thanks to beamforming with a large 
number of antennas, mmWave MM systems can 
also be used for longer-range cellular services with 
simultaneous multi-user transmissions.

Opportunities for Energy-Efficient Design: 
Low-complexity channel equalization techniques 
are sufficient for mmWave MM networks because 
the narrow directional beams and the near-LOS 
propagation eliminate much of the multipath. For 
the same reason, mmWave MM BSs can support 
point-to-multipoint wireless backhaul operations, 
thus becoming a cost-effective alternative to fiber 
backhaul. In addition, the FDD mode of opera-
tion, which incurs large CSI overhead and is there-
fore impractical at the sub-3GHz bands, becomes 
realizable at mmWave bands because sparsity in 
mmWave channels can be exploited to derive 
low-overhead multi-stage precoding techniques. 
To explain how, we consider the two-stage pre-
coding technique proposed in [6] and illustrate 
the underlying idea in Fig. 4a.

The two-stage digital precoding technique in 
Fig. 4a exploits channel sparsity to partition UEs 
into different groups, each group comprising UEs 

with approximately the same channel covariance 
eigenspace, such that the covariance eigenspa-
ces of different UE groups are near-orthogonal 
to each other. To understand how the CSI over-
head is reduced, let us first denote r as the rank 
of channel covariance matrix and S, where (S ≤ 
K), as the number of independent streams to be 
transmitted to the UEs. Precoder I exploits the 
near-orthogonality of covariance eigenspaces to 
reduce the channel dimensionality from (M  K) 
to (B  S), where B (S ≤ B < r) is an optimization 
parameter to regulate intergroup interference in 
the system. A low-rate feedback mechanism is suf-
ficient to update precoder I because it depends 
only on the channel covariance, which typically 
varies very slowly when compared to the chan-
nel coherence time. Precoder II employs simple 
linear precoding techniques on the effective (B  
S) channel so as to extract multiplexing gains with-
in each UE group. To update precoder II, the BS 
should acquire instantaneous CSI of the effective 
(B  S) channel during each coherence interval. 
Observe that the CSI overhead will still be signifi-
cantly lower than in conventional FDD systems 
because the overhead comes predominantly from 
estimating reduced-dimensional channels.

Sparsity in mmWave channels can also be 
exploited to design hybrid analog-digital beam-
forming techniques that relax RF chain require-
ments in the system [17]. As an example, we 
consider the hybrid precoding technique pro-
posed in [17] and illustrate the underlying idea in 
Fig. 4b The hybrid precoding technique in Fig. 4b 
reduces the number of RF chains from M to NR, 
where S ≤ K, S ≤ NR ≤ M. The analog precoder 
applies phase-only control to extract large array 
gains and to reduce the channel dimensional-
ity from M  K to NR  S. The digital precoder 
applies simple linear precoding techniques on the 
effective NR  S channel to extract multiplexing 
gains. RF chain requirements are reduced because 

Figure 5. Co-channel TDD and co-channel reverse TDD deployment modes for massive MIMO HetNets. 
Throughput gains are achieved because the available spectrum is fully utilized in the macro-tier as well 
as the SC tier.
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the digital precoders operate only on the effective 
low-dimensional channel.

Challenges and Open Problems: Despite clear 
evidence that multi-stage digital precoding tech-
niques, as shown in Fig. 4a, can be designed to 
reduce training overhead in mmWave MM sys-
tems, such techniques have only been studied to a 
limited degree (see [6] for an example). Trade-offs 
introduced by pilot contamination are not clearly 
understood. Missing in the existing literature are 
studies that optimize the interference mitigation 
parameter B for energy efficiency. Other open 
problems include optimizing user grouping, cova-
riance tracking, and inter cell interference mitiga-
tion for energy efficiency. Similar is the situation 
with hybrid analog-digital beamforming techniques 
that relax RF chain requirements at the BS. These 
techniques are invaluable for mmWave operations 
because mixed signal components in the RF chain, 
particularly the high resolution analog to digital 
converters (ADCs), consume unacceptably large 
amounts of power under large-bandwidth oper-
ations. Notice that the analog precoding phase 
introduces several new constraints on the trans-
ceiver design, such as limited precision for phase 
control, limited number of phase shifts, and limited 
ADC resolution. Existing literature does not dis-
cuss the EE trade-offs introduced by these con-
straints, leaving a huge scope for further research.

Another major bottleneck in the realization 
of energy-efficient mmWave MM systems is the 
hardware design. Silicon-based CMOS tech-
nologies provide a simple and cost-effective 
means to integrate several mmWave antennas 
with necessary analog and digital circuitry onto 
a single package. However, the high frequency 
and large-bandwidth operations in the mmWave 
regime impose several constraints on the design 
of transceiver components. For example, high 
substrate absorption losses and high noise power 
levels become roadblocks to the design and inte-
gration of highly directional antennas into CMOS 
packages. In addition, improper isolation between 
active on-chip components can result in self-jam-
ming and signal distortion. Transceivers that 
address all of these design complications have not 
been fabricated as of this writing.

MM-Based Heterogenous Networks
Dense heterogenous networks (HetNets), where 
spectrum utilization is maximized by decreas-
ing the cell size and increasing the number of 
small cells (SCs) per unit area, offer a promising 
approach to satisfy the traffic demands expect-
ed in 5G. In terms of EE, HetNets are a superior 
alternative to massive MIMO because the power 
consumption per small cell access point (SCA) 
is generally low, SCAs can be opportunistically 
turned on/off depending on traffic demand, and 
high throughput gains can be achieved by intel-
ligently offloading traffic between outdoor and 
indoor SCs. Moreover, when M SCs are deployed 
per unit area, the average BS-to-UE distance 
is reduced by M(1/2) Therefore, if g  is the path 
loss exponent, we can reduce the UE transmis-
sion powers proportionately with M(g/2) and still 
achieve the same per-UE throughput as before 
densification. In other words, we can achieve 
O(M(g/2)) array gains. Since g > 2 for most prop-
agation conditions, these array gains are generally 

larger than the O(M) gains offered by convention-
al MM systems.

Benefits from Co-Existence: Due to smaller 
coverage areas, SCs fail to ensure seamless con-
nectivity and quality of service (QoS) to UEs that 
are highly mobile. This limitation can be overcome 
by designing a two-tier MM HetNet, wherein a 
macro cell tier formed by the MM BSs is over-
laid with an SC tier formed by small cells, such 
as pico cells and femto cells. The macro cell tier 
ensures uniform service coverage and supports 
highly mobile UEs, while the SC tier caters to local 
indoor and outdoor capacity requirements. Clear-
ly, such an architecture can simultaneously extract 
the O(M(g/2)) array gains offered by HetNets and 
the O(K) multiplexing gains offered by MM. In 
addition, since the macro tier hosts a large num-
ber of antennas, few antennas can be reserved 
for wireless backhaul to the SC tier. Interference 
coordination in MM HetNets can be analyzed 
by using simple tools from random matrix theory 
[18–20]. This is highly beneficial because tools 
from stochastic geometry, which are used to 
study interference coordination in single antenna 
HetNets, cannot be easily applied to MM Het-
Nets due to the introduction of cross-tier statistical 
dependencies.

Opportunities for Energy-Efficient Design: EE 
in MM HetNets can be improved by combining 
the EE-maximization techniques discussed above 
with few EE-maximization techniques for HetNets, 
such as BS sleeping, cell zooming, cell association, 
and coordinated multi-point transmission (CoMP). 
Several other EE-maximization techniques can 
be designed by jointly exploiting the properties 
of MM and HetNet technologies. For example, 
MM HetNets can use low-complexity multi-flow 
beamforming techniques to jointly coordinate 
interference among UEs in both macro and SC 
tiers. Such techniques are known to drastically 
reduce hardware requirements at the MM BSs. 
For example, [18] shows that the number of MM 
BS antennas can be reduced by more than 50 
percent if a few single antenna SCs are overlaid 
on the MM cell.

In addition, co-channel TDD deployment 
modes, where the available spectrum is fully uti-
lized in both macro and SC tiers, can be attempt-
ed. For illustration, let us consider two example 
scenarios proposed in [20], namely the co-chan-
nel TDD (co-TDD) and the co-channel reverse 
TDD (co-RTDD) modes. The underlying ideas 
are illustrated in Fig. 5. In the co-TDD mode, 
the macro and SC tiers are time-synchronized to 
simultaneously transmit in the UL or the DL. In the 
co-RTDD mode, the order of UL and DL trans-
missions are reversed in one of the tiers, that is, 
the macro tier operates in the DL when the SC 
tier operates in the UL, and vice versa. Since the 
entire spectrum is utilized in both the tiers, simul-
taneous and uncoordinated transmissions can 
introduce significant inter-tier and intra-tier inter-
ference. Fortunately, the BSs in the macro and SC 
tiers can not only estimate the channels to their 
intended UEs, but also the covariance of interfer-
ing signals. As a result, channel reciprocity can be 
exploited to design precoding vectors that sac-
rifice certain degrees of freedom (DoFs) on the 
DL so as to blank out the strongest interference 
subspace [19, 20]. When such spatial blanking 

Due to smaller coverage 
areas, SCs fail to ensure 
seamless connectivity 
and quality of service 
(QoS) to UEs which are 
highly mobile. This lim-
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macro cell tier formed 
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such as pico cells and 
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techniques are used and the number of sacrificed 
DoFs are optimized (see [19] for an example), sig-
nificant throughput gains can be achieved in the 
SC tier at the cost of a negligible throughput loss 
in the macro tier.

The co-TDD and co-RTDD modes exhibit 
conflicting properties, leading to some interest-
ing trade-offs during the design of energy-efficient 
MM HetNets. For example, the quality of interfer-
ence estimation and the ability to reject interfer-
ence can be considerably different because the 
interfering signals are radically different. Co-RTDD 
renders higher interference estimation accuracy 
than co-TDD because the interferer channels are 
quasi-static in co-RTDD, due to fixed locations of 
the MM and SC BSs, but are dynamically varying 
in co-TDD, due to moving UEs. Consequently, 
when in the macro-tier UL, co-RTDD can attempt 
spatial blanking to achieve higher throughput 
gains than co-TDD [19]. On the other hand, 
when in the macro-tier DL, co-RTDD offers lower 
throughput gains than co-TDD because co-RTDD 
renders lower interference rejection. This is in turn 
because the SCs have many fewer antennas than 
the MM BSs and hence, sacrificing DoFs at the 
SCs may not reduce the cross-tier interference 
significantly.

Challenges and Open Problems: Several chal-
lenges continue to roadblock the design of ener-
gy-efficient MM HetNets. For example, most 
studies on spatial blanking (see [19, 20] and 
references therein) attempt channel covariance 
estimation and precoding based on a wide-sense 
stationarity assumption on the channel process. 
Such an assumption is valid only locally and is sus-
ceptible to UE mobility. Therefore, novel chan-
nel tracking algorithms should be developed to 
adaptively learn and update the estimated inter-
ference subspace according to the non-station-
ary time-varying effects in the system. Also, most 
studies on spatial blanking (see [20] and refer-
ences therein) focus on simplistic UE distribution 
scenarios with either isolated UEs or hotspots. In 
practice, HetNets would experience asymmet-
ric traffic loads coming from a combination of 
hotspots and isolated UEs. Therefore, low-com-
plexity interference coordination strategies should 
be designed to allow efficient spatial resource 
sharing between hotspots and isolated UEs. Addi-
tionally, as discussed earlier, there is no clear win-
ner among co-TDD and co-RTDD. This calls for 
the design of innovative co-channel deployment 
modes, which can simultaneously reap the bene-
fits and overcome the limitations of co-TDD and 
co-RTDD. Appropriate pilot assignment methods 
should be developed to contain pilot contamina-
tion, which can be particularly severe in co-chan-
nel deployments. Load balancing in MM HetNets 
is another largely unexplored subject. Resource 
efficient inter-tier offloading techniques based on 
load-adaptive cell zooming, dynamic antenna acti-
vation, and mobility-aware handover, should be 
designed under practical constraints such as limit-
ed backhaul and load asymmetry.

Conclusion
Massive multiple-input multiple-output (MIMO) 
is a promising technology for sustainable evolu-
tion toward 5G because it offers multiple orders 
of spectral and energy efficiency (EE) gains over 

current LTE technologies. This article has explored 
several opportunities to boost the EE gains offered 
by massive MIMO (MM) systems. Standard 
EE-maximization techniques for conventional MM 
systems, such as scaling the number of BS anten-
nas, implementing low-complexity operations at 
the BS, minimizing power amplifier losses, and 
minimizing RF chain requirements, were brief-
ly reviewed and a few open research problems 
were identified. This article has also investigated 
several new opportunities for EE-maximization in 
“hybrid MM systems,” where MM operates along-
side other emerging 5G technologies, such as mil-
limeter wave and heterogenous networks. Mutual 
benefits arising from the co-existence of these 5G 
technologies were analyzed to understand why 
hybrid MM systems have an enormous potential 
to achieve larger EE gains than conventional MM 
systems. A critical review of the state-of-the-art 
on the design of energy-efficient hybrid MM sys-
tems allowed us to identify several open research 
problems for future work. Despite being largely 
unexplored, hybrid MM systems are promising for 
future 5G deployments because there is strong 
evidence that these systems have the potential to 
meet the energy efficiency demands expected in 
5G cellular networks.
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